BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 8234199)

  • 1. Application of photoacoustic phase angle spectroscopy (phi AS) to eumelanins and pheomelanins.
    Caiti E; Crippa PR; Viappiani C
    Pigment Cell Res; 1993 Jun; 6(3):140-4. PubMed ID: 8234199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing near-infrared photorelaxation pathways in eumelanins and pheomelanins.
    Piletic IR; Matthews TE; Warren WS
    J Phys Chem A; 2010 Nov; 114(43):11483-91. PubMed ID: 20882951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aerobic photoreactivity of synthetic eumelanins and pheomelanins: generation of singlet oxygen and superoxide anion.
    Szewczyk G; Zadlo A; Sarna M; Ito S; Wakamatsu K; Sarna T
    Pigment Cell Melanoma Res; 2016 Nov; 29(6):669-678. PubMed ID: 27505632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel free radicals in synthetic and natural pheomelanins: distinction between dopa melanins and cysteinyldopa melanins by ESR spectroscopy.
    Sealy RC; Hyde JS; Felix CC; Menon IA; Prota G; Swartz HM; Persad S; Haberman HF
    Proc Natl Acad Sci U S A; 1982 May; 79(9):2885-9. PubMed ID: 6283550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical characterization of hair melanins in various coat-color mutants of mice.
    Ozeki H; Ito S; Wakamatsu K; Hirobe T
    J Invest Dermatol; 1995 Sep; 105(3):361-6. PubMed ID: 7665913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparable photoreactivity of hair melanosomes, eu- and pheomelanins at low concentrations: low melanin a risk factor for UVA damage and melanoma?
    Haywood RM; Lee M; Andrady C
    Photochem Photobiol; 2008; 84(3):572-81. PubMed ID: 18399925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of optical properties of electropolymerized melanin films by photopyroelectric spectroscopy.
    de Albuquerque JE; Giacomantonio C; White AG; Meredith P
    Eur Biophys J; 2006 Feb; 35(3):190-5. PubMed ID: 16284765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Raman spectroscopy quantification of eumelanin subunits in natural unaltered pigments.
    Galván I; Araujo-Andrade C; Marro M; Loza-Alvarez P; Wakamatsu K
    Pigment Cell Melanoma Res; 2018 Nov; 31(6):673-682. PubMed ID: 29738111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical characterization of eumelanins with special emphasis on 5,6-dihydroxyindole-2-carboxylic acid content and molecular size.
    Ozeki H; Wakamatsu K; Ito S; Ishiguro I
    Anal Biochem; 1997 May; 248(1):149-57. PubMed ID: 9177734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eumelanins and pheomelanins: characterization by electron spin resonance spectroscopy.
    Sealy RC; Hyde JS; Felix CC; Menon IA; Prota G
    Science; 1982 Aug; 217(4559):545-7. PubMed ID: 6283638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. "Fifty Shades" of Black and Red or How Carboxyl Groups Fine Tune Eumelanin and Pheomelanin Properties.
    Micillo R; Panzella L; Koike K; Monfrecola G; Napolitano A; d'Ischia M
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27196900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eumelanin buildup on the nanoscale: aggregate growth/assembly and visible absorption development in biomimetic 5,6-dihydroxyindole polymerization.
    Arzillo M; Mangiapia G; Pezzella A; Heenan RK; Radulescu A; Paduano L; d'Ischia M
    Biomacromolecules; 2012 Aug; 13(8):2379-90. PubMed ID: 22651227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative scattering of melanin solutions.
    Riesz J; Gilmore J; Meredith P
    Biophys J; 2006 Jun; 90(11):4137-44. PubMed ID: 16565050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring the optical parameters of weakly absorbing, highly turbid suspensions by a new technique: photoacoustic detection of scattered light.
    Zhao Z; Myllylä R
    Appl Opt; 2005 Dec; 44(36):7845-52. PubMed ID: 16381536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative photoacoustic measurement of tissue optical absorption spectrum aided by an optical contrast agent.
    Rajian JR; Carson PL; Wang X
    Opt Express; 2009 Mar; 17(6):4879-89. PubMed ID: 19293919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of HPLC and stereologic image analysis for the quantitation of eu- and pheomelanins in nevus cells and stimulated melanoma cells.
    Donois E; del Marmol V; Ghanem G; Surlève-Bazeille JE
    J Invest Dermatol; 1998 Sep; 111(3):422-8. PubMed ID: 9740235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiative relaxation quantum yields for synthetic eumelanin.
    Meredith P; Riesz J
    Photochem Photobiol; 2004 Feb; 79(2):211-6. PubMed ID: 15068035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wavelength-dependent photoacoustic calorimetry study of melanin.
    Forest SE; Simon JD
    Photochem Photobiol; 1998 Sep; 68(3):296-8. PubMed ID: 9747585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Melanins and melanosomes from llama (Lama glama L.).
    Cecchi T; Cozzali C; Passamonti P; Ceccarelli P; Pucciarelli F; Gargiulo AM; Frank EN; Renieri C
    Pigment Cell Res; 2004 Jun; 17(3):307-11. PubMed ID: 15140078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical absorption spectra and corresponding
    Graham MT; Sharma A; Padovano WM; Suresh V; Chiu A; Thon SM; Tuffaha S; Bell MAL
    J Biomed Opt; 2023 Sep; 28(9):097001. PubMed ID: 37671115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.