BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 8234243)

  • 1. Mutational tests of the NMR-docked structure of the staphylococcal nuclease-metal-3',5'-pdTp complex.
    Chuang WJ; Weber DJ; Gittis AG; Mildvan AS
    Proteins; 1993 Sep; 17(1):36-48. PubMed ID: 8234243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR docking of the competitive inhibitor thymidine 3',5'-diphosphate into the X-ray structure of staphylococcal nuclease.
    Weber DJ; Serpersu EH; Gittis AG; Lattman EE; Mildvan AS
    Proteins; 1993 Sep; 17(1):20-35. PubMed ID: 8234242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic resonance studies of the binding of oligonucleotide substrates to mutants of staphylococcal nuclease.
    Chuang WJ; Gittis AG; Mildvan AS
    Proteins; 1994 Jan; 18(1):68-80. PubMed ID: 8146123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NMR docking of a substrate into the X-ray structure of staphylococcal nuclease.
    Weber DJ; Gittis AG; Mullen GP; Abeygunawardana C; Lattman EE; Mildvan AS
    Proteins; 1992 Aug; 13(4):275-87. PubMed ID: 1518799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMR docking of a substrate into the X-ray structure of the Asp-21-->Glu mutant of staphylococcal nuclease.
    Weber DJ; Libson AM; Gittis AG; Lebowitz MS; Mildvan AS
    Biochemistry; 1994 Jul; 33(26):8017-28. PubMed ID: 8025106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structures of the binary Ca2+ and pdTp complexes and the ternary complex of the Asp21-->Glu mutant of staphylococcal nuclease. Implications for catalysis and ligand binding.
    Libson AM; Gittis AG; Lattman EE
    Biochemistry; 1994 Jul; 33(26):8007-16. PubMed ID: 8025105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational features of a truncated staphylococcal nuclease R (SNR135) and their implications for catalysis.
    Zhou B; Jing GZ
    Arch Biochem Biophys; 1998 Dec; 360(1):33-40. PubMed ID: 9826426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solution structures of staphylococcal nuclease from multidimensional, multinuclear NMR: nuclease-H124L and its ternary complex with Ca2+ and thymidine-3',5'-bisphosphate.
    Wang J; Truckses DM; Abildgaard F; Dzakula Z; Zolnai Z; Markley JL
    J Biomol NMR; 1997 Sep; 10(2):143-64. PubMed ID: 9369015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The crystal structure of the ternary complex of staphylococcal nuclease, Ca2+, and the inhibitor pdTp, refined at 1.65 A.
    Loll PJ; Lattman EE
    Proteins; 1989; 5(3):183-201. PubMed ID: 2780539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron spin echo modulation and nuclear relaxation studies of staphylococcal nuclease and its metal-coordinating mutants.
    Serpersu EH; McCracken J; Peisach J; Mildvan AS
    Biochemistry; 1988 Oct; 27(21):8034-44. PubMed ID: 2852950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The crystal structure of staphylococcal nuclease refined at 1.7 A resolution.
    Hynes TR; Fox RO
    Proteins; 1991; 10(2):92-105. PubMed ID: 1896431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic and magnetic resonance studies of active-site mutants of staphylococcal nuclease: factors contributing to catalysis.
    Serpersu EH; Shortle D; Mildvan AS
    Biochemistry; 1987 Mar; 26(5):1289-300. PubMed ID: 3567171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solution studies of staphylococcal nuclease H124L. 2. 1H, 13C, and 15N chemical shift assignments for the unligated enzyme and analysis of chemical shift changes that accompany formation of the nuclease-thymidine 3',5'-bisphosphate-calcium ternary complex.
    Wang JF; Hinck AP; Loh SN; LeMaster DM; Markley JL
    Biochemistry; 1992 Jan; 31(3):921-36. PubMed ID: 1731949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMR structure of a stable "OB-fold" sub-domain isolated from staphylococcal nuclease.
    Alexandrescu AT; Gittis AG; Abeygunawardana C; Shortle D
    J Mol Biol; 1995 Jul; 250(2):134-43. PubMed ID: 7608966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic and magnetic resonance studies of the glutamate-43 to serine mutant of staphylococcal nuclease.
    Serpersu EH; Hibler DW; Gerlt JA; Mildvan AS
    Biochemistry; 1989 Feb; 28(4):1539-48. PubMed ID: 2566322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic and magnetic resonance studies of effects of genetic substitution of a Ca2+-liganding amino acid in staphylococcal nuclease.
    Serpersu EH; Shortle D; Mildvan AS
    Biochemistry; 1986 Jan; 25(1):68-77. PubMed ID: 3513826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. X-ray crystal structures of staphylococcal nuclease complexed with the competitive inhibitor cobalt(II) and nucleotide.
    Loll PJ; Quirk S; Lattman EE; Garavito RM
    Biochemistry; 1995 Apr; 34(13):4316-24. PubMed ID: 7703245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of amino acid replacements of glycine 20 on conformational stability and catalysis of staphylococcal nuclease.
    Feng Y; Huang S; Zhang W; Zeng Z; Zou X; Zhong L; Peng J; Jing G
    Biochimie; 2004 Dec; 86(12):893-901. PubMed ID: 15667939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increasing the thermostability of staphylococcal nuclease: implications for the origin of protein thermostability.
    Chen J; Lu Z; Sakon J; Stites WE
    J Mol Biol; 2000 Oct; 303(2):125-30. PubMed ID: 11023780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diverse interactions between the individual mutations in a double mutant at the active site of staphylococcal nuclease.
    Weber DJ; Serpersu EH; Shortle D; Mildvan AS
    Biochemistry; 1990 Sep; 29(37):8632-42. PubMed ID: 1702994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.