BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 8234768)

  • 1. Exploration of cochlear function by otoacoustic emissions: relationship to pure-tone audiometry.
    Avan P; Bonfils P; Loth D; Teyssou M; Menguy C
    Prog Brain Res; 1993; 97():67-75. PubMed ID: 8234768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative assessment of human cochlear function by evoked otoacoustic emissions.
    Avan P; Bonfils P; Loth D; Narcy P; Trotoux J
    Hear Res; 1991 Mar; 52(1):99-112. PubMed ID: 2061217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Study of the cochlea by evoked otoemissions. Physiological interpretation of results].
    Avan P; Bonfils P; Loth D; Teyssou M; Trotoux J; Narcy P
    Ann Otolaryngol Chir Cervicofac; 1991; 108(3):135-41. PubMed ID: 2069327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Evoked otoacoustic emissions in noise-induced hearing loss].
    Bicciolo G; Ruscito P; Rizzo S; Frenguelli A
    Acta Otorhinolaryngol Ital; 1993; 13(6):505-15. PubMed ID: 8209689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Role of the basal cochlea in the genesis of evoked acoustic oto-emissions in the subject with normal hearing].
    el-Bez M; Avan P; Erminy M; François M; Bonfils P
    Ann Otolaryngol Chir Cervicofac; 1994; 111(8):443-9. PubMed ID: 7645896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tone-burst and click-evoked otoacoustic emissions in subjects with hearing loss above 0.25, 0.5, and 1 kHz.
    Jedrzejczak WW; Kochanek K; Trzaskowski B; Pilka E; Skarzynski PH; Skarzynski H
    Ear Hear; 2012; 33(6):757-67. PubMed ID: 22710662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-variant analysis of otoacoustic emissions and estimation of hearing thresholds: transient evoked otoacoustic emissions.
    Vinck BM; Van Cauwenberge PB; Corthals P; De Vel E
    Audiology; 1998; 37(6):315-34. PubMed ID: 9888189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Otoacoustic emissions from ears with spontaneous activity behave differently to those without: Stronger responses to tone bursts as well as to clicks.
    Jedrzejczak WW; Kochanek K; Skarzynski H
    PLoS One; 2018; 13(2):e0192930. PubMed ID: 29451905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal patterns of transient-evoked otoacoustic emissions in normal and impaired cochleae.
    Avan P; Bonfils P; Loth D; Wit HP
    Hear Res; 1993 Oct; 70(1):109-20. PubMed ID: 8276727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in cochlear function related to acoustic stimulation of cervical vestibular evoked myogenic potential stimulation.
    Strömberg AK; Olofsson Å; Westin M; Duan M; Stenfelt S
    Hear Res; 2016 Oct; 340():43-49. PubMed ID: 26724755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age-related declines in distortion product otoacoustic emissions utilizing pure tone contralateral stimulation in CBA/CaJ mice.
    Varghese GI; Zhu X; Frisina RD
    Hear Res; 2005 Nov; 209(1-2):60-7. PubMed ID: 16061336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in the Compressive Nonlinearity of the Cochlea During Early Aging: Estimates From Distortion OAE Input/Output Functions.
    Ortmann AJ; Abdala C
    Ear Hear; 2016; 37(5):603-14. PubMed ID: 27232070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient-evoked otoacoustic emissions as a measure of noise-induced threshold shift.
    Marshall L; Heller LM
    J Speech Lang Hear Res; 1998 Dec; 41(6):1319-34. PubMed ID: 9859887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The clinical use of oto-acoustic emissions of cochlear distortion products].
    Hauser R; Probst R; Harris FP
    Laryngorhinootologie; 1991 Mar; 70(3):123-31. PubMed ID: 2036146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Otoacoustic emissions and the categorization of cochlear and retro-cochlear lesions.
    Patuzzi R
    Br J Audiol; 1993 Apr; 27(2):91-5. PubMed ID: 8220287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distortion product otoacoustic emissions in an industrial setting.
    Korres GS; Balatsouras DG; Tzagaroulakis A; Kandiloros D; Ferekidou E; Korres S
    Noise Health; 2009; 11(43):103-10. PubMed ID: 19414930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Analysis of cochlear manifestations of presbycusis by acoustic oto-emissions. Review of the literature].
    Bonfils P; Cymes M; Uziel A; Ores S
    Rev Laryngol Otol Rhinol (Bord); 1989; 110(1):63-5. PubMed ID: 2491717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extended frequency range hearing thresholds and otoacoustic emissions in acute acoustic trauma.
    Büchler M; Kompis M; Hotz MA
    Otol Neurotol; 2012 Oct; 33(8):1315-22. PubMed ID: 22931865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-frequency otoacoustic emissions in schoolchildren measured by two commercial devices.
    Jedrzejczak WW; Piotrowska A; Kochanek K; Sliwa L; Skarzynski H
    Int J Pediatr Otorhinolaryngol; 2013 Oct; 77(10):1724-8. PubMed ID: 23972827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Age-related shifts in distortion product otoacoustic emissions peak-ratios and amplitude modulation spectra.
    Lai J; Bartlett EL
    Hear Res; 2015 Sep; 327():186-98. PubMed ID: 26232530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.