These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 8235879)

  • 1. The pullout strength of titanium alloy MRI-compatible and stainless steel MRI-incompatible Gardner-Wells tongs.
    Blumberg KD; Catalano JB; Cotler JM; Balderston RA
    Spine (Phila Pa 1976); 1993 Oct; 18(13):1895-6. PubMed ID: 8235879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A biomechanical comparison of Gardner-Wells tongs and halo device used for cervical spine traction.
    Lerman JA; Haynes RJ; Koeneman EJ; Koeneman JB; Wong WB
    Spine (Phila Pa 1976); 1994 Nov; 19(21):2403-6. PubMed ID: 7846592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insertion force measurement of cervical traction tongs: a biomechanical study.
    Littleton K; Curcin A; Novak VP; Belkoff SM
    J Orthop Trauma; 2000; 14(7):505-8. PubMed ID: 11083614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of how different halos influence pin forces.
    Kerwin GA; Chou KL; White DB; Shen KL; Salciccioli GG; Yang KH
    Spine (Phila Pa 1976); 1994 May; 19(9):1078-81. PubMed ID: 8029746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complications from the Gardner-Wells tongs.
    Choo JH; Liu WY; Kumar VP
    Injury; 1996 Sep; 27(7):512-3. PubMed ID: 8977841
    [No Abstract]   [Full Text] [Related]  

  • 6. Pull-off strength of gardner-Wells tongs from cadaveric crania.
    Krag MH; Byrt W; Pope M
    Spine (Phila Pa 1976); 1989 Mar; 14(3):247-50. PubMed ID: 2711238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Brain abscess following the use of skull traction with Gardner-Wells tongs].
    Soyer J; Iborra JP; Fargues P; Pries P; Clarac JP
    Chirurgie; 1999 Sep; 124(4):432-4. PubMed ID: 10546398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A cadaveric simulation of distal femoral traction shows safety in magnetic resonance imaging.
    Mansour A; Block J; Obremskey W
    J Orthop Trauma; 2009 Oct; 23(9):658-62. PubMed ID: 19897988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Titanium alloy pins versus stainless steel pins in external fixation at the wrist: a randomized prospective study.
    Pieske O; Geleng P; Zaspel J; Piltz S
    J Trauma; 2008 May; 64(5):1275-80. PubMed ID: 18469650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computational evaluation of the effect of intramedullary nail material properties on the stabilization of simulated femoral shaft fractures.
    Perez A; Mahar A; Negus C; Newton P; Impelluso T
    Med Eng Phys; 2008 Jul; 30(6):755-60. PubMed ID: 17905637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A biomechanical evaluation of magnetic resonance imaging-compatible wire in cervical spine fixation.
    Scuderi GJ; Greenberg SS; Cohen DS; Latta LL; Eismont FJ
    Spine (Phila Pa 1976); 1993 Oct; 18(14):1991-4. PubMed ID: 8272948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Odebode-Agaja adult cervical traction device.
    Odebode TO; Agaja SB
    Trop Doct; 2011 Jan; 41(1):21-2. PubMed ID: 21149570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic resonance imaging susceptibility artifacts in the cervical vertebrae and spinal cord related to monocortical screw-polymethylmethacrylate implants in canine cadavers.
    Jones BG; Fosgate GT; Green EM; Habing AM; Hettlich BF
    Am J Vet Res; 2017 Apr; 78(4):458-464. PubMed ID: 28346006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Titanium wire internal fixation for stabilization of injury of the cervical spine: clinical results and postoperative magnetic resonance imaging of the spinal cord.
    Geisler FH; Mirvis SE; Zrebeet H; Joslyn JN
    Neurosurgery; 1989 Sep; 25(3):356-62. PubMed ID: 2771006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Penetration of cranial inner table with Gardner-Wells tongs.
    Lerman JA; Dickman CA; Haynes RJ
    J Spinal Disord; 2001 Jun; 14(3):211-3. PubMed ID: 11389370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal-induced artifacts in computed tomography and magnetic resonance imaging: comparison of a biodegradable magnesium alloy versus titanium and stainless steel controls.
    Filli L; Luechinger R; Frauenfelder T; Beck S; Guggenberger R; Farshad-Amacker N; Andreisek G
    Skeletal Radiol; 2015 Jun; 44(6):849-56. PubMed ID: 25417003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Skull traction for cervical spinal injury in Enugu: A 5-year retrospective multicenter analysis of the clinical outcomes of patients treated with two common devices.
    Uche EO; Nwankwo OE; Okorie E; Muobike A
    Niger J Clin Pract; 2016; 19(5):580-4. PubMed ID: 27538543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical evaluation of cranial flap fixation techniques: comparative experimental study of suture, stainless steel wire, and rivetlike titanium clamp.
    Wang YR; Su ZP; Yang SX; Guo BY; Zeng YJ
    Ann Plast Surg; 2007 Apr; 58(4):388-91. PubMed ID: 17413880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Closed reduction of fracture-dislocation of the sub-axial cervical spine with Gardner-Wells tongs. Technical note.
    Rios JJP; Bernáldez GIL; Oropeza EO; Aguilar OJM; Olvera MD
    Trauma Case Rep; 2023 Dec; 48():100948. PubMed ID: 37781163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superficial temporal artery laceration. A complication of skull tong traction.
    Nimityongskul P; Bose WJ; Hurley DP; Anderson LD
    Orthop Rev; 1992 Jun; 21(6):761, 764-5. PubMed ID: 1614723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.