These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 8236587)

  • 1. Volumetric arterial flow quantification using echo contrast. An in vitro comparison of three ultrasonic intensity methods: radio frequency, video and Doppler.
    Schwarz KQ; Bezante GP; Chen X; Mottley JG; Schlief R
    Ultrasound Med Biol; 1993; 19(6):447-60. PubMed ID: 8236587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. When can Doppler be used in place of integrated backscatter as a measure of scattered ultrasound intensity?
    Schwarz KQ; Bezante GP; Chen X
    Ultrasound Med Biol; 1995; 21(2):231-42. PubMed ID: 7571131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative echo contrast concentration measurement by Doppler sonography.
    Schwarz KQ; Bezante GP; Chen X; Schlief R
    Ultrasound Med Biol; 1993; 19(4):289-97. PubMed ID: 8346603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-intensity-based volumetric flow measurements: an in vitro study.
    Li PC; Yeh CK; Wang SW
    Ultrasound Med Biol; 2002 Mar; 28(3):349-58. PubMed ID: 11978415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contrast ultrasonography: necessity of linear data processing for the quantification of tumor vascularization.
    Peronneau P; Lassau N; Leguerney I; Roche A; Cosgrove D
    Ultraschall Med; 2010 Aug; 31(4):370-8. PubMed ID: 20577941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow quantitation by radio frequency analysis of contrast echocardiography.
    Rovai D; Lombardi M; Mazzarisi A; Landini L; Taddei L; Distante A; Benassi A; L'Abbate A
    Int J Card Imaging; 1993 Mar; 9(1):7-19. PubMed ID: 8492003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Two-dimensional measurement of blood flow velocity in rat arteries based on ultrasonic particle image velocimetry].
    Zhu Y; Qian M; Niu L; Zheng H; Lu G
    Nan Fang Yi Ke Da Xue Xue Bao; 2014 Aug; 34(9):1305-9. PubMed ID: 25263364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The quantification of absolute myocardial perfusion in humans by contrast echocardiography: algorithm and validation.
    Vogel R; Indermühle A; Reinhardt J; Meier P; Siegrist PT; Namdar M; Kaufmann PA; Seiler C
    J Am Coll Cardiol; 2005 Mar; 45(5):754-62. PubMed ID: 15734622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 4-D flow magnetic resonance imaging: blood flow quantification compared to 2-D phase-contrast magnetic resonance imaging and Doppler echocardiography.
    Gabbour M; Schnell S; Jarvis K; Robinson JD; Markl M; Rigsby CK
    Pediatr Radiol; 2015 Jun; 45(6):804-13. PubMed ID: 25487721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro flow quantification with contrast power Doppler imaging.
    Ugolini P; Delouche A; Herment A; Diebold B
    Ultrasound Med Biol; 2000 Jan; 26(1):113-20. PubMed ID: 10687799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advantages in using multi-frequency driving ultrasound for optimizing echo particle image velocimetry techniques.
    Zheng H; Mukdadi O; Hertzberg J; Shandas R
    Biomed Sci Instrum; 2004; 40():371-6. PubMed ID: 15133986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow quantification with nakagami parametric imaging for suppressing contrast microbubbles attenuation.
    Gu X; Wei M; Zong Y; Jiang H; Wan M
    Ultrasound Med Biol; 2013 Apr; 39(4):660-9. PubMed ID: 23384469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Haemodynamics and blood flow measured using ultrasound imaging.
    Hoskins PR
    Proc Inst Mech Eng H; 2010; 224(2):255-71. PubMed ID: 20349818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contrast sonography, video densitometry and intervillous blood flow: a pilot project.
    Barth WH; McCurnin DC; Dee Carey K; Hankins GD
    Placenta; 2006; 27(6-7):719-26. PubMed ID: 16157372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microcirculation volumetric flow assessment using high-resolution, contrast-assisted images.
    Yeh CK; Lu SY; Chen YS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jan; 55(1):74-83. PubMed ID: 18334315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relation of contrast echo intensity and flow velocity to the amplification of contrast opacification produced by intermittent ultrasound transmission.
    Ohmori K; Cotter B; Kwan OL; Mizushige K; DeMaria AN
    Am Heart J; 1997 Dec; 134(6):1066-74. PubMed ID: 9424067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro evaluation of the impact of ultrasound scanner settings and contrast bolus volume on time-intensity curves.
    Gauthier TP; Chebil M; Peronneau P; Lassau N
    Ultrasonics; 2012 Jan; 52(1):12-9. PubMed ID: 21722933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [MR-Imaging of lower leg muscle perfusion].
    Leppek R; Hoos O; Sattler A; Kohle S; Azzam S; Al Haffar I; Keil B; Ricken P; Klose KJ; Alfke H
    Herz; 2004 Feb; 29(1):32-46. PubMed ID: 14968340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myocardial washout of sonicated iopamidol does not reflect the transmural distribution of coronary blood flow.
    Rovai D; Ghelardini G; Lombardi M; Trivella MG; Nevola E; Taddei L; Ferdeghini EM; Distante A; L'Abbate A
    Eur Heart J; 1993 Aug; 14(8):1072-8. PubMed ID: 8404937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.