These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 823747)

  • 1. Cell sociology: a way of reconsidering the current concepts of morphogenesis.
    Chandebois R
    Acta Biotheor; 1976; 25(2-3):71-102. PubMed ID: 823747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. General mechanisms of regeneration as elucidated by experiments of planarians and by a new formulation of the morphogenetic field concept.
    Chandebois R
    Acta Biotheor; 1973; 22(1):2-33. PubMed ID: 4200247
    [No Abstract]   [Full Text] [Related]  

  • 3. Cell sociology and the problem of position effect: pattern formation, origin and role of gradients.
    Chandebois R
    Acta Biotheor; 1977; 26(4):203-38. PubMed ID: 418611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localized VEGF signaling from ectoderm to mesenchyme cells controls morphogenesis of the sea urchin embryo skeleton.
    Duloquin L; Lhomond G; Gache C
    Development; 2007 Jun; 134(12):2293-302. PubMed ID: 17507391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction and the Turing-Child field in development.
    Schiffmann Y
    Prog Biophys Mol Biol; 2005 Sep; 89(1):36-92. PubMed ID: 15826672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EGFR signaling regulates cell proliferation, differentiation and morphogenesis during planarian regeneration and homeostasis.
    Fraguas S; Barberán S; Cebrià F
    Dev Biol; 2011 Jun; 354(1):87-101. PubMed ID: 21458439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Planarian regeneration: achievements and future directions after 20 years of research.
    Saló E; Abril JF; Adell T; Cebrià F; Eckelt K; Fernandez-Taboada E; Handberg-Thorsager M; Iglesias M; Molina MD; Rodríguez-Esteban G
    Int J Dev Biol; 2009; 53(8-10):1317-27. PubMed ID: 19247944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth factors and early mesoderm morphogenesis: insights from the sea urchin embryo.
    Adomako-Ankomah A; Ettensohn CA
    Genesis; 2014 Mar; 52(3):158-72. PubMed ID: 24515750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Morphogens: experimental illusion or reality?].
    Mikhaĭlov AT
    Ontogenez; 1984; 15(6):563-84. PubMed ID: 6395056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Planarians and the History of Animal Regeneration: Paradigm Shifts and Key Concepts in Biology.
    Elliott SA; Alvarado AS
    Methods Mol Biol; 2018; 1774():207-239. PubMed ID: 29916157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development.
    Röttinger E; Saudemont A; Duboc V; Besnardeau L; McClay D; Lepage T
    Development; 2008 Jan; 135(2):353-65. PubMed ID: 18077587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The power of regeneration and the stem-cell kingdom: freshwater planarians (Platyhelminthes).
    Saló E
    Bioessays; 2006 May; 28(5):546-59. PubMed ID: 16615086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selection of initial conditions for recursive production of multicellular organisms.
    Yoshida H; Furusawa C; Kaneko K
    J Theor Biol; 2005 Apr; 233(4):501-14. PubMed ID: 15748911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Looking into the sea urchin embryo you can see local cell interactions regulate morphogenesis.
    Wilt FH
    Bioessays; 1997 Aug; 19(8):665-8. PubMed ID: 9264247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The transmission of morphogenetic signals from amphibian mesoderm to ectoderm in primary induction.
    Toivonen S; Tarin D; Saxén L
    Differentiation; 1976 Jan; 5(1):49-55. PubMed ID: 789165
    [No Abstract]   [Full Text] [Related]  

  • 16. [Induction mechanisms and the programming of differentiation].
    Lopashov GV; Khoperskaia OA
    Ontogenez; 1977; 8(6):563-81. PubMed ID: 341012
    [No Abstract]   [Full Text] [Related]  

  • 17. Cell movements in neurogenesis. An interview with Professor Carl-Olof Jacobson. Interview by Ted Edendal.
    Jacobson CO
    Int J Dev Biol; 1995 Oct; 39(5):705-11. PubMed ID: 8645554
    [No Abstract]   [Full Text] [Related]  

  • 18. The emergence and regulation of spatial organization in early animal development.
    Cooke J
    Annu Rev Biophys Bioeng; 1975; 4(00):185-217. PubMed ID: 1098554
    [No Abstract]   [Full Text] [Related]  

  • 19. HpEts implicated in primary mesenchyme cell differentiation of the sea urchin (Hemicentrotus pulcherrimus) embryo.
    Kurokawa D; Kitajima T; Mitsunaga-Nakatsubo K; Amemiya S; Shimada H; Akasaka K
    Zygote; 2000; 8 Suppl 1():S33-4. PubMed ID: 11191299
    [No Abstract]   [Full Text] [Related]  

  • 20. Studies on the cellular basis of morphogenesis in the sea urchin embryo. Directed movements of primary mesenchyme cells in normal and vegetalized larvae.
    Gustafson T; Wolpert L
    Exp Cell Res; 1999 Dec; 253(2):288-95. PubMed ID: 10585249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.