These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 8237477)

  • 21. Intermittent and continuous exposure to 1,25(OH)2D3 have different effects on growth plate chondrocytes in vitro.
    Klaus G; König B; Hügel U; Ritz E; Mehls O
    Kidney Int; 1993 Oct; 44(4):708-15. PubMed ID: 8258948
    [TBL] [Abstract][Full Text] [Related]  

  • 22. FGF upregulates osteopontin in epiphyseal growth plate chondrocytes: implications for endochondral ossification.
    Weizmann S; Tong A; Reich A; Genina O; Yayon A; Monsonego-Ornan E
    Matrix Biol; 2005 Dec; 24(8):520-9. PubMed ID: 16253490
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physiological importance of the 1,25(OH)2D3 membrane receptor and evidence for a membrane receptor specific for 24,25(OH)2D3.
    Pedrozo HA; Schwartz Z; Rimes S; Sylvia VL; Nemere I; Posner GH; Dean DD; Boyan BD
    J Bone Miner Res; 1999 Jun; 14(6):856-67. PubMed ID: 10352093
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro regulation of proliferation and differentiation within a postnatal growth plate of the cranial base by parathyroid hormone-related peptide (PTHrP).
    Wealthall RJ
    J Cell Physiol; 2009 Jun; 219(3):688-97. PubMed ID: 19229881
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of synthetic human parathyroid hormone on the levels of alkaline phosphatase activity and formation of alkaline phosphatase-rich matrix vesicles by primary cultures of chicken epiphyseal growth plate chondrocytes.
    Chin JE; Schalk EM; Kemick ML; Wuthier RE
    Bone Miner; 1986 Oct; 1(5):421-36. PubMed ID: 2462454
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of lead on growth plate chondrocyte phenotype.
    Hicks DG; O'Keefe RJ; Reynolds KJ; Cory-Slechta DA; Puzas JE; Judkins A; Rosier RN
    Toxicol Appl Pharmacol; 1996 Sep; 140(1):164-72. PubMed ID: 8806882
    [TBL] [Abstract][Full Text] [Related]  

  • 27. End labeling studies of fragmented DNA in the avian growth plate: evidence of apoptosis in terminally differentiated chondrocytes.
    Hatori M; Klatte KJ; Teixeira CC; Shapiro IM
    J Bone Miner Res; 1995 Dec; 10(12):1960-8. PubMed ID: 8619377
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The influence of vitamin D metabolites on the calcification of cartilage matrix and the C-propeptide of type II collagen (chondrocalcin).
    Hinek A; Poole AR
    J Bone Miner Res; 1988 Aug; 3(4):421-9. PubMed ID: 3265578
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of alkaline phosphatase by 1,25-dihydroxyvitamin D3 and ascorbic acid in bone-derived cells.
    Franceschi RT; Young J
    J Bone Miner Res; 1990 Nov; 5(11):1157-67. PubMed ID: 1702922
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of calcitonin and parathyroid hormone on calcification of primary cultures of chicken growth plate chondrocytes.
    Ishikawa Y; Wu LN; Genge BR; Mwale F; Wuthier RE
    J Bone Miner Res; 1997 Mar; 12(3):356-66. PubMed ID: 9076578
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of ascorbic acid, calcitriol, and retinoic acid on the differentiation of preosteoblasts.
    Choong PF; Martin TJ; Ng KW
    J Orthop Res; 1993 Sep; 11(5):638-47. PubMed ID: 8410463
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 1,25-dihydroxyvitamin D3-mediated transforming growth factor-beta release is impaired in cultured osteoblasts from patients with multiple pituitary hormone deficiencies.
    Sterck JG; Klein-Nulend J; Burger EH; Lips P
    J Bone Miner Res; 1996 Mar; 11(3):367-76. PubMed ID: 8852947
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hepatocyte growth factor and its actions in growth plate chondrocytes.
    Grumbles RM; Howell DS; Wenger L; Altman RD; Howard GA; Roos BA
    Bone; 1996 Sep; 19(3):255-61. PubMed ID: 8873966
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Short-term zinc deficiency inhibits chondrocyte proliferation and induces cell apoptosis in the epiphyseal growth plate of young chickens.
    Wang X; Fosmire GJ; Gay CV; Leach RM
    J Nutr; 2002 Apr; 132(4):665-73. PubMed ID: 11925458
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Healing of rachitic lesions in chicks by 24R,25-dihydroxycholecalciferol administered locally into bone.
    Lidor C; Atkin I; Ornoy A; Dekel S; Edelstein S
    J Bone Miner Res; 1987 Apr; 2(2):91-8. PubMed ID: 3502667
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molybdenum-induced changes in the epiphyseal growth plate.
    Parry NM; Phillippo M; Reid MD; McGaw BA; Flint DJ; Loveridge N
    Calcif Tissue Int; 1993 Sep; 53(3):180-6. PubMed ID: 8242470
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cell proliferation and enzyme activities associated with the development of avian tibial dyschondroplasia: an in situ biochemical study.
    Farquharson C; Whitehead C; Rennie S; Thorp B; Loveridge N
    Bone; 1992; 13(1):59-67. PubMed ID: 1581110
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 1,25(OH)2D3 alters growth plate maturation and bone architecture in young rats with normal renal function.
    Idelevich A; Kerschnitzki M; Shahar R; Monsonego-Ornan E
    PLoS One; 2011; 6(6):e20772. PubMed ID: 21695192
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Avian tibial dyschondroplasia: the interaction of genetic selection and dietary 1,25-dihydroxycholecalciferol.
    Thorp BH; Ducro B; Whitehead CC; Farquharson C; Sorensen P
    Avian Pathol; 1993 Jun; 22(2):311-24. PubMed ID: 18671020
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Autocrine, paracrine, and hormonal signals involved in growth plate chondrocyte differentiation.
    Leach RM; Twal WO
    Poult Sci; 1994 Jun; 73(6):883-8. PubMed ID: 8072933
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.