These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 8238302)

  • 1. Alpha-chymotrypsin deregulation of the sodium-calcium exchanger in barnacle muscle cells.
    Espinosa-Tanguma R; DeSantiago J; Rasgado-Flores H
    Am J Physiol; 1993 Oct; 265(4 Pt 1):C1118-27. PubMed ID: 8238302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetrical properties of the Na-Ca exchanger in voltage-clamped, internally dialyzed squid axons under symmetrical ionic conditions.
    DiPolo R; Beaugé L
    J Gen Physiol; 1990 May; 95(5):819-35. PubMed ID: 2362183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Na/Ca exchange in barnacle muscle cells has a stoichiometry of 3 Na+/1 Ca2+.
    Rasgado-Flores H; Blaustein MP
    Am J Physiol; 1987 May; 252(5 Pt 1):C499-504. PubMed ID: 3578502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics and stoichiometry of coupled Na efflux and Ca influx (Na/Ca exchange) in barnacle muscle cells.
    Rasgado-Flores H; Santiago EM; Blaustein MP
    J Gen Physiol; 1989 Jun; 93(6):1219-41. PubMed ID: 2769225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voltage dependence of Na-Ca exchange in barnacle muscle cells. I. Na-Na exchange activated by alpha-chymotrypsin.
    Rasgado-Flores H; Espinosa-Tanguma R; Tie J; DeSantiago J
    Ann N Y Acad Sci; 1996 Apr; 779():236-48. PubMed ID: 8659831
    [No Abstract]   [Full Text] [Related]  

  • 6. Steady-state and dynamic properties of cardiac sodium-calcium exchange. Ion and voltage dependencies of the transport cycle.
    Matsuoka S; Hilgemann DW
    J Gen Physiol; 1992 Dec; 100(6):963-1001. PubMed ID: 1336540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid interaction of FRCRCFa with the cytosolic side of the cardiac sarcolemma Na(+)-Ca2+ exchanger blocks the ion transport without preventing the binding of either sodium or calcium.
    Khananshvili D; Baazov D; Weil-Maslansky E; Shaulov G; Mester B
    Biochemistry; 1996 Dec; 35(49):15933-40. PubMed ID: 8961960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stoichiometry and regulation of the Na-Ca exchanger in barnacle muscle cells.
    Rasgado-Flores H; DeSantiago J; Espinosa-Tanguma R
    Ann N Y Acad Sci; 1991; 639():22-33. PubMed ID: 1664702
    [No Abstract]   [Full Text] [Related]  

  • 9. The mechanism by which cytoplasmic protons inhibit the sodium-calcium exchanger in guinea-pig heart cells.
    Doering AE; Lederer WJ
    J Physiol; 1993 Jul; 466():481-99. PubMed ID: 8410703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The exchange in intact squid axons.
    Allen TJ
    Ann N Y Acad Sci; 1991; 639():71-84. PubMed ID: 1785896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of manganese and changes in internal calcium on Na-Ca exchange fluxes in the intact squid giant axon.
    Allen TJ
    Biochim Biophys Acta; 1990 Nov; 1030(1):101-10. PubMed ID: 1702319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the reverse Na/Ca exchange in squid axons and its modulation by Cai and ATP. Cai-dependent Nai/Cao and Nai/Nao exchange modes.
    DiPolo R; Beaugé L
    J Gen Physiol; 1987 Oct; 90(4):505-25. PubMed ID: 3681260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of isosmotic removal of extracellular Na+ on cell volume and membrane potential in muscle cells.
    Peña-Rasgado C; Summers JC; McGruder KD; DeSantiago J; Rasgado-Flores H
    Am J Physiol; 1994 Sep; 267(3 Pt 1):C759-67. PubMed ID: 7943205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of ATP and vanadate on calcium efflux from barnacle muscle fibres.
    Nelson MT; Blaustein MP
    Nature; 1981 Jan; 289(5795):314-6. PubMed ID: 6256662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of extracellular sodium on calcium efflux and membrane current in single muscle cells from the barnacle.
    Lederer WJ; Nelson MT
    J Physiol; 1983 Aug; 341():325-39. PubMed ID: 6620183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of Na-H exchange by intracellular lithium in barnacle muscle fibers.
    Davis BA; Hogan EM; Boron WF
    Am J Physiol; 1992 Jul; 263(1 Pt 1):C246-56. PubMed ID: 1322042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of isosmotic removal of extracellular Ca2+ and of membrane potential on cell volume in muscle cells.
    Peña-Rasgado C; McGruder KD; Summers JC; Rasgado-Flores H
    Am J Physiol; 1994 Sep; 267(3 Pt 1):C768-75. PubMed ID: 7943206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of external monovalent cations on Na(+)-Ca2+ exchange in cultured rat glial cells.
    Holgado A; Beaugé L
    Ann N Y Acad Sci; 1996 Apr; 779():279-81. PubMed ID: 8659835
    [No Abstract]   [Full Text] [Related]  

  • 19. Na(+)-Ca2+ exchange in locust striated muscles.
    Juhászová M; Ruscák M; Zachar J; Novotová M
    Gen Physiol Biophys; 1990 Oct; 9(5):477-87. PubMed ID: 2269420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics, stoichiometry and role of the Na-Ca exchange mechanism in isolated cardiac myocytes.
    Crespo LM; Grantham CJ; Cannell MB
    Nature; 1990 Jun; 345(6276):618-21. PubMed ID: 2348872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.