BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 8238406)

  • 1. Regulation of cardiac mitochondrial calcium by average extramitochondrial calcium.
    Leisey JR; Grotyohann LW; Scott DA; Scaduto RC
    Am J Physiol; 1993 Oct; 265(4 Pt 2):H1203-8. PubMed ID: 8238406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on mitochondrial Ca2+-transport and matrix Ca2+ using fura-2-loaded rat heart mitochondria.
    McCormack JG; Browne HM; Dawes NJ
    Biochim Biophys Acta; 1989 Mar; 973(3):420-7. PubMed ID: 2923871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium and proton activities in rat cardiac mitochondria. Effect of matrix environment on behaviour of fluorescent probes.
    Reers M; Kelly RA; Smith TW
    Biochem J; 1989 Jan; 257(1):131-42. PubMed ID: 2537619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of the Ca2(+)-sensitive intramitochondrial dehydrogenases and entrapped fura-2 to study Sr2+ and Ba2+ transport across the inner membrane of mammalian mitochondria.
    McCormack JG; Osbaldeston NJ
    Eur J Biochem; 1990 Aug; 192(1):239-44. PubMed ID: 2401295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of the matrix free Ca2+ concentration in heart mitochondria by entrapped fura-2 and quin2.
    Lukács GL; Kapus A
    Biochem J; 1987 Dec; 248(2):609-13. PubMed ID: 3435469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of citric acid cycle by calcium.
    Wan B; LaNoue KF; Cheung JY; Scaduto RC
    J Biol Chem; 1989 Aug; 264(23):13430-9. PubMed ID: 2503501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Ca2+ ions in the regulation of intramitochondrial metabolism in rat heart. Evidence from studies with isolated mitochondria that adrenaline activates the pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase complexes by increasing the intramitochondrial concentration of Ca2+.
    McCormack JG; Denton RM
    Biochem J; 1984 Feb; 218(1):235-47. PubMed ID: 6424656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of micromolar concentrations of free calcium ions on the reduction of heart mitochondrial NAD(P) by 2-oxoglutarate.
    Hansford RG; Castro F
    Biochem J; 1981 Sep; 198(3):525-33. PubMed ID: 6275851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of Ca2+ ions in the regulation of intramitochondrial metabolism and energy production in rat heart.
    McCormack JG; Denton RM
    Mol Cell Biochem; 1989 Sep; 89(2):121-5. PubMed ID: 2682206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of spermine on mitochondrial Ca2+ transport and the ranges of extramitochondrial Ca2+ to which the matrix Ca2+-sensitive dehydrogenases respond.
    McCormack JG
    Biochem J; 1989 Nov; 264(1):167-74. PubMed ID: 2604711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parallel measurement of oxoglutarate dehydrogenase activity and matrix free Ca2+ in fura-2-loaded heart mitochondria.
    Lukács GL; Kapus A; Fonyó A
    FEBS Lett; 1988 Feb; 229(1):219-23. PubMed ID: 2450043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intramitochondrial and extramitochondrial free calcium ion concentrations of suspensions of heart mitochondria with very low, plausibly physiological, contents of total calcium.
    Hansford RG; Castro F
    J Bioenerg Biomembr; 1982 Dec; 14(5-6):361-76. PubMed ID: 7161279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of intramitochondrial pCa and pH by fura-2 and 2,7 biscarboxyethyl-5(6)-carboxyfluorescein (BCECF) fluorescence.
    Davis MH; Altschuld RA; Jung DW; Brierley GP
    Biochem Biophys Res Commun; 1987 Nov; 149(1):40-5. PubMed ID: 3689416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The loading of fura-2 into mitochondria in the intact perfused rat heart and its use to estimate matrix Ca2+ under various conditions.
    Allen SP; Stone D; McCormack JG
    J Mol Cell Cardiol; 1992 Jul; 24(7):765-73. PubMed ID: 1383555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A role for the mitochondrial Na(+)-Ca2+ exchanger in the regulation of oxidative phosphorylation in isolated heart mitochondria.
    Cox DA; Matlib MA
    J Biol Chem; 1993 Jan; 268(2):938-47. PubMed ID: 8419373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium concentration in rat liver mitochondria during anoxic incubation.
    Chang YJ; Chang KJ
    J Formos Med Assoc; 2002 Feb; 101(2):136-43. PubMed ID: 12099205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of Ca2+ in the regulation of intramitochondrial energy production in heart.
    McCormack JG; Denton RM
    Biomed Biochim Acta; 1987; 46(8-9):S487-92. PubMed ID: 3325044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dependence of cardiac mitochondrial pyruvate dehydrogenase activity on intramitochondrial free Ca2+ concentration.
    Moreno-Sánchez R; Hansford RG
    Biochem J; 1988 Dec; 256(2):403-12. PubMed ID: 2464995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relationship between free and total calcium concentrations in the matrix of liver and brain mitochondria.
    Chalmers S; Nicholls DG
    J Biol Chem; 2003 May; 278(21):19062-70. PubMed ID: 12660243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Restricted redox oscillation in oxidative phosphorylation in jaundiced rat liver mitochondria and its relation to calcium ion.
    Chang YJ; Iwata S; Terada Y; Ozawa K
    J Surg Res; 1996 Dec; 66(2):91-9. PubMed ID: 9024818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.