BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 8238469)

  • 1. Impairment of renal function precedes establishment of hypertension in spontaneously hypertensive rats.
    Uyehara CF; Gellai M
    Am J Physiol; 1993 Oct; 265(4 Pt 2):R943-50. PubMed ID: 8238469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of thromboxane in control of arterial pressure and renal function in young spontaneously hypertensive rats.
    Grone HJ; Grippo RS; Arendshorst WJ; Dunn MJ
    Am J Physiol; 1986 Mar; 250(3 Pt 2):F488-96. PubMed ID: 3953827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Renal hemodynamics during development of hypertension in young spontaneously hypertensive rats.
    Christiansen RE; Roald AB; Tenstad O; Iversen BM
    Kidney Blood Press Res; 2002; 25(5):322-8. PubMed ID: 12435879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of nitric oxide in the autoregulation of renal blood flow and glomerular filtration rate in aging spontaneously hypertensive rats.
    Kvam FI; Ofstad J; Iversen BM
    Kidney Blood Press Res; 2000; 23(6):376-84. PubMed ID: 11070417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abnormalities in kallikrein excretion in spontaneously hypertensive rats.
    Ader JL; Pollock DM; Butterfield MI; Arendshorst WJ
    Am J Physiol; 1985 Mar; 248(3 Pt 2):F396-403. PubMed ID: 3844907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blood pressure development of the spontaneously hypertensive rat after concurrent manipulations of dietary Ca2+ and Na+. Relation to intestinal Ca2+ fluxes.
    McCarron DA; Lucas PA; Shneidman RJ; LaCour B; Drüeke T
    J Clin Invest; 1985 Sep; 76(3):1147-54. PubMed ID: 4044829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Is the humoral renal antihypertensive activity of the spontaneously hypertensive rat (SHR) reset to the high blood pressure?
    Karlström G; Bergström G; Folkow B; Rudenstam J; Göthberg G
    Acta Physiol Scand; 1991 Apr; 141(4):517-30. PubMed ID: 1877351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced tubuloglomerular feedback activity in rats developing spontaneous hypertension.
    Dilley JR; Arendshorst WJ
    Am J Physiol; 1984 Oct; 247(4 Pt 2):F672-9. PubMed ID: 6496694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Angiotensin II-induced changes in G-protein expression and resistance of renal microvessels in young genetically hypertensive rats.
    Vyas SJ; Blaschak CM; Chinoy MR; Jackson EK
    Mol Cell Biochem; 2000 Sep; 212(1-2):121-9. PubMed ID: 11108143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of uninephrectomy on renal structural properties in spontaneously hypertensive rats.
    Kinuno H; Tomoda F; Koike T; Takata M; Inoue H
    Clin Exp Pharmacol Physiol; 2005 Mar; 32(3):173-8. PubMed ID: 15743399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glomerular and tubular damage in normotensive and hypertensive rats.
    Ofstad J; Iversen BM
    Am J Physiol Renal Physiol; 2005 Apr; 288(4):F665-72. PubMed ID: 15536168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autoregulation of zonal glomerular filtration rate and renal blood flow in spontaneously hypertensive rats.
    Wang X; Aukland K; Ofstad J; Iversen BM
    Am J Physiol; 1995 Oct; 269(4 Pt 2):F515-21. PubMed ID: 7485536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Renal hemodynamics and sodium excretion in stroke-prone spontaneously hypertensive rats.
    Nagaoka A; Kakihana M; Suno M; Hamajo K
    Am J Physiol; 1981 Sep; 241(3):F244-9. PubMed ID: 7282927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endothelin-mediated effect of erythropoietin on blood pressure and renal hemodynamics in hypertensive rats.
    Tojo A; Doumoto M; Oka K; Numabe A; Kimura K; Yagi S
    Am J Physiol; 1996 Apr; 270(4 Pt 2):R744-8. PubMed ID: 8967402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Abnormalities in glomerular function in rats developing spontaneous hypertension.
    Dilley JR; Stier CT; Arendshorst WJ
    Am J Physiol; 1984 Jan; 246(1 Pt 2):F12-20. PubMed ID: 6696074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic co-segregation of renal haemodynamics and blood pressure in the spontaneously hypertensive rat.
    Harrap SB; Doyle AE
    Clin Sci (Lond); 1988 Jan; 74(1):63-9. PubMed ID: 3276439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resetting of renal blood flow autoregulation in spontaneously hypertensive rats.
    Iversen BM; Sekse I; Ofstad J
    Am J Physiol; 1987 Mar; 252(3 Pt 2):F480-6. PubMed ID: 3826388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Function and expression of endothelin receptor subtypes in the kidneys of spontaneously hypertensive rats.
    Hocher B; Rohmeiss P; Zart R; Diekmann F; Vogt V; Metz D; Fakhury M; Gretz N; Bauer C; Koppenhagen K; Neumayer HH; Distler A
    Cardiovasc Res; 1996 Apr; 31(4):499-510. PubMed ID: 8689641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The persistent effect of long-term enalapril on pressure natriuresis in spontaneously hypertensive rats.
    Dukacz SA; Adams MA; Kline RL
    Am J Physiol; 1997 Jul; 273(1 Pt 2):F104-12. PubMed ID: 9249597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early altered renal sodium handling determined by lithium clearance in spontaneously hypertensive rats (SHR): role of renal nerves.
    Boer PA; Morelli JM; Figueiredo JF; Gontijo JA
    Life Sci; 2005 Mar; 76(16):1805-15. PubMed ID: 15698858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.