BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 8238868)

  • 21. Mathematical and experimental analyses of antibody transport in hollow-fiber-based specific antibody filters.
    Hout MS; Federspiel WJ
    Biotechnol Prog; 2003; 19(5):1553-61. PubMed ID: 14524719
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling and optimization of high-sensitivity, low-volume microfluidic-based surface immunoassays.
    Zimmermann M; Delamarche E; Wolf M; Hunziker P
    Biomed Microdevices; 2005 Jun; 7(2):99-110. PubMed ID: 15940422
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Application of surface plasmon resonance toward studies of low-molecular-weight antigen-antibody binding interactions.
    Adamczyk M; Moore JA; Yu Z
    Methods; 2000 Mar; 20(3):319-28. PubMed ID: 10694454
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Self-consistent theory of reversible ligand binding to a spherical cell.
    Ghosh S; Gopalakrishnan M; Forsten-Williams K
    Phys Biol; 2008 Jan; 4(4):344-54. PubMed ID: 18185012
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Binding kinetics of antigen by immobilized antibody or of antibody by immobilized antigen: influence of lateral interactions and variable rate coefficients.
    Sadana A; Madugula A
    Biotechnol Prog; 1993; 9(3):259-66. PubMed ID: 7763695
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Control of antigen mass transport via capture substrate rotation: binding kinetics and implications on immunoassay speed and detection limits.
    Wang G; Driskell JD; Porter MD; Lipert RJ
    Anal Chem; 2009 Aug; 81(15):6175-85. PubMed ID: 19572706
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Finite concentration effects on diffusion-controlled reactions.
    Senapati S; Wong CF; McCammon JA
    J Chem Phys; 2004 Oct; 121(16):7896-900. PubMed ID: 15485251
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Antibody affinities and relative titers in polyclonal populations: surface plasmon resonance analysis of anti-DNA antibodies.
    Sem DS; McNeeley PA; Linnik MD
    Arch Biochem Biophys; 1999 Dec; 372(1):62-8. PubMed ID: 10562417
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct monitoring of molecular recognition processes using fluorescence enhancement at colloid-coated microplates.
    Lobmaier C; Hawa G; Götzinger M; Wirth M; Pittner F; Gabor F
    J Mol Recognit; 2001; 14(4):215-22. PubMed ID: 11500967
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Concentration measurement of unpurified proteins using biosensor technology under conditions of partial mass transport limitation.
    Richalet-Sécordel PM; Rauffer-Bruyère N; Christensen LL; Ofenloch-Haehnle B; Seidel C; Van Regenmortel MH
    Anal Biochem; 1997 Jul; 249(2):165-73. PubMed ID: 9212868
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Theoretical analysis of the inter-ligand overhauser effect: a new approach for mapping structural relationships of macromolecular ligands.
    London RE
    J Magn Reson; 1999 Dec; 141(2):301-11. PubMed ID: 10579953
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Affinity analysis of non-steady-state data obtained under mass transport limited conditions using BIAcore technology.
    Karlsson R
    J Mol Recognit; 1999; 12(5):285-92. PubMed ID: 10556876
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computing steady-state metal flux at microorganism and bioanalogical sensor interfaces in multiligand systems. A reaction layer approximation and its comparison with the rigorous solution.
    Buffle J; Startchev K; Galceran J
    Phys Chem Chem Phys; 2007 Jun; 9(22):2844-55. PubMed ID: 17538729
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Extending the range of rate constants available from BIACORE: interpreting mass transport-influenced binding data.
    Myszka DG; He X; Dembo M; Morton TA; Goldstein B
    Biophys J; 1998 Aug; 75(2):583-94. PubMed ID: 9675161
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lactose-installed poly(ethylene glycol)-poly(d,l-lactide) block copolymer micelles exhibit fast-rate binding and high affinity toward a protein bed simulating a cell surface. A surface plasmon resonance study.
    Jule E; Nagasaki Y; Kataoka K
    Bioconjug Chem; 2003; 14(1):177-86. PubMed ID: 12526707
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetic analysis of a high-affinity antibody/antigen interaction performed by multiple Biacore users.
    Katsamba PS; Navratilova I; Calderon-Cacia M; Fan L; Thornton K; Zhu M; Bos TV; Forte C; Friend D; Laird-Offringa I; Tavares G; Whatley J; Shi E; Widom A; Lindquist KC; Klakamp S; Drake A; Bohmann D; Roell M; Rose L; Dorocke J; Roth B; Luginbühl B; Myszka DG
    Anal Biochem; 2006 May; 352(2):208-21. PubMed ID: 16564019
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extracting kinetic rate constants from surface plasmon resonance array systems.
    Rich RL; Cannon MJ; Jenkins J; Pandian P; Sundaram S; Magyar R; Brockman J; Lambert J; Myszka DG
    Anal Biochem; 2008 Feb; 373(1):112-20. PubMed ID: 17889820
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An analysis of antigen-antibody binding kinetics for biosensor applications utilized as a model system: influence of non-specific binding.
    Chen Z; Sadana A
    Biophys Chem; 1996 Jan; 57(2-3):177-87. PubMed ID: 8573676
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microfluidic measurement of antibody-antigen binding kinetics from low-abundance samples and single cells.
    Singhal A; Haynes CA; Hansen CL
    Anal Chem; 2010 Oct; 82(20):8671-9. PubMed ID: 20857931
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of diffusion to fractal surfaces on the binding kinetics for antibody-antigen, analyte-receptor, and analyte-receptorless (protein) systems.
    Sadana A; Sutaria M
    Biophys Chem; 1997 Mar; 65(1):29-44. PubMed ID: 9130375
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.