These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 8238886)
1. A method for defining the stages of low-density lipoprotein oxidation by the separation of cholesterol- and cholesteryl ester-oxidation products using HPLC. Kritharides L; Jessup W; Gifford J; Dean RT Anal Biochem; 1993 Aug; 213(1):79-89. PubMed ID: 8238886 [TBL] [Abstract][Full Text] [Related]
2. Lipid hydroperoxide involvement in copper-dependent and independent oxidation of low density lipoproteins. Thomas CE; Jackson RL J Pharmacol Exp Ther; 1991 Mar; 256(3):1182-8. PubMed ID: 2005580 [TBL] [Abstract][Full Text] [Related]
3. Involvement of preexisting lipid hydroperoxides in Cu(2+)-stimulated oxidation of low-density lipoprotein. Thomas JP; Kalyanaraman B; Girotti AW Arch Biochem Biophys; 1994 Dec; 315(2):244-54. PubMed ID: 7986064 [TBL] [Abstract][Full Text] [Related]
4. A critical overview of the chemistry of copper-dependent low density lipoprotein oxidation: roles of lipid hydroperoxides, alpha-tocopherol, thiols, and ceruloplasmin. Burkitt MJ Arch Biochem Biophys; 2001 Oct; 394(1):117-35. PubMed ID: 11566034 [TBL] [Abstract][Full Text] [Related]
5. Apolipoprotein B-bound lipids as a marker for evaluation of low density lipoprotein oxidation in vivo. Tertov VV; Kaplun VV; Dvoryantsev SN; Orekhov AN Biochem Biophys Res Commun; 1995 Sep; 214(2):608-13. PubMed ID: 7677772 [TBL] [Abstract][Full Text] [Related]
6. Apolipoprotein B carbonyl formation is enhanced by lipid peroxidation during copper-mediated oxidation of human low-density lipoproteins. Yan LJ; Lodge JK; Traber MG; Packer L Arch Biochem Biophys; 1997 Mar; 339(1):165-71. PubMed ID: 9056246 [TBL] [Abstract][Full Text] [Related]
7. Paradoxical protective effect of aminoguanidine toward low-density lipoprotein oxidation: inhibition of apolipoprotein B fragmentation without preventing its carbonylation. Mechanism of action of aminoguanidine. Jedidi I; Thérond P; Zarev S; Cosson C; Couturier M; Massot C; Jore D; Gardès-Albert M; Legrand A; Bonnefont-Rousselot D Biochemistry; 2003 Sep; 42(38):11356-65. PubMed ID: 14503886 [TBL] [Abstract][Full Text] [Related]
8. Secondary radicals derived from chloramines of apolipoprotein B-100 contribute to HOCl-induced lipid peroxidation of low-density lipoproteins. Hazell LJ; Davies MJ; Stocker R Biochem J; 1999 May; 339 ( Pt 3)(Pt 3):489-95. PubMed ID: 10215584 [TBL] [Abstract][Full Text] [Related]
9. Covalent binding of oxidized cholesteryl esters to protein: implications for oxidative modification of low density lipoprotein and atherosclerosis. Kawai Y; Saito A; Shibata N; Kobayashi M; Yamada S; Osawa T; Uchida K J Biol Chem; 2003 Jun; 278(23):21040-9. PubMed ID: 12663661 [TBL] [Abstract][Full Text] [Related]
10. Oxidative degradation of cholesteryl esters in low-density lipoproteins: analysis by liquid chromatography-light scattering and protection by a new synthetic antioxidant, S20478. Arborati M; Benchorba D; Lesieur I; Bizot-Espiard JG; Guardiola-Lemaitre B; Chapman MJ; Ninio E Fundam Clin Pharmacol; 1997; 11(1):68-77. PubMed ID: 9182079 [TBL] [Abstract][Full Text] [Related]
11. Detection of cholesteryl ester hydroperoxide isomers using gas chromatography-mass spectrometry combined with thin-layer chromatography blotting. Kawai Y; Miyoshi M; Moon JH; Terao J Anal Biochem; 2007 Jan; 360(1):130-7. PubMed ID: 17097596 [TBL] [Abstract][Full Text] [Related]
12. Direct evidence for apo B-100-mediated copper reduction: studies with purified apo B-100 and detection of tryptophanyl radicals. Batthyány C; Santos CX; Botti H; Cerveñansky C; Radi R; Augusto O; Rubbo H Arch Biochem Biophys; 2000 Dec; 384(2):335-40. PubMed ID: 11368321 [TBL] [Abstract][Full Text] [Related]
13. Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions. A possible peroxidative role for paraoxonase. Aviram M; Rosenblat M; Bisgaier CL; Newton RS; Primo-Parmo SL; La Du BN J Clin Invest; 1998 Apr; 101(8):1581-90. PubMed ID: 9541487 [TBL] [Abstract][Full Text] [Related]
14. Determination of lipid hydroperoxides in low density lipoprotein from human plasma using high performance liquid chromatography with chemiluminescence detection. Miyazawa T; Fujimoto K; Oikawa S Biomed Chromatogr; 1990 May; 4(3):131-4. PubMed ID: 2383696 [TBL] [Abstract][Full Text] [Related]
15. Comparative time-courses of copper-ion-mediated protein and lipid oxidation in low-density lipoprotein. Knott HM; Baoutina A; Davies MJ; Dean RT Arch Biochem Biophys; 2002 Apr; 400(2):223-32. PubMed ID: 12054433 [TBL] [Abstract][Full Text] [Related]
16. Effects of oxidation on the structure and stability of human low-density lipoprotein. Jayaraman S; Gantz DL; Gursky O Biochemistry; 2007 May; 46(19):5790-7. PubMed ID: 17444660 [TBL] [Abstract][Full Text] [Related]
17. Macrophages require both iron and copper to oxidize low-density lipoprotein in Hanks' balanced salt solution. Kritharides L; Jessup W; Dean RT Arch Biochem Biophys; 1995 Oct; 323(1):127-36. PubMed ID: 7487058 [TBL] [Abstract][Full Text] [Related]
18. Structural changes of low density lipoproteins with Cu2+ and glucose induced oxidation. Gallego-Nicasio J; López-Rodríguez G; Martínez R; Tarancón MJ; Fraile MV; Carmona P Biopolymers; 2003; 72(6):514-20. PubMed ID: 14587073 [TBL] [Abstract][Full Text] [Related]
19. Oxidation of low-density lipoprotein with hypochlorite causes transformation of the lipoprotein into a high-uptake form for macrophages. Hazell LJ; Stocker R Biochem J; 1993 Feb; 290 ( Pt 1)(Pt 1):165-72. PubMed ID: 8439285 [TBL] [Abstract][Full Text] [Related]
20. Oxidation of lipids in low density lipoprotein particles. Noguchi N; Numano R; Kaneda H; Niki E Free Radic Res; 1998 Jul; 29(1):43-52. PubMed ID: 9733021 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]