These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 8238934)

  • 1. Trace elemental analysis at nanometer spatial resolution by parallel-detection electron energy loss spectroscopy.
    Leapman RD; Newbury DE
    Anal Chem; 1993 Sep; 65(18):2409-14. PubMed ID: 8238934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of electron energy loss spectra for the quantification of detection limits.
    Menon NK; Krivanek OL
    Microsc Microanal; 2002 Jun; 8(3):203-15. PubMed ID: 12533236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high-sensitivity CCD system for parallel electron energy-loss spectroscopy (CCD for EELS).
    Tang Z; Ho R; Xu Z; Shao Z; Somlyo AP
    J Microsc; 1994 Aug; 175(Pt 2):100-7. PubMed ID: 7966250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parallel recording of electron energy loss spectra.
    Shuman H
    Ultramicroscopy; 1981; 6(2):163-7. PubMed ID: 7268929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parallel electron energy-loss spectroscopy free from gain variation.
    Feng JL; Ho R; Shao Z; Somlyo AP
    Ultramicroscopy; 1999 Apr; 76(4):221-31. PubMed ID: 10214885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron energy loss spectroscopic imaging in biology.
    Simon GT; Heng YM
    Scanning Microsc; 1988 Mar; 2(1):257-66. PubMed ID: 3285454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing detector geometry for trace element mapping by X-ray fluorescence.
    Sun Y; Gleber SC; Jacobsen C; Kirz J; Vogt S
    Ultramicroscopy; 2015 May; 152():44-56. PubMed ID: 25600825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron energy loss analysis of near-trace-element concentrations of calcium.
    Shuman H; Somlyo AP
    Ultramicroscopy; 1987; 21(1):23-32. PubMed ID: 3824681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of high-angle annular dark field scanning transmission electron microscopy, scanning transmission electron microscopy-energy dispersive X-ray spectrometry, and energy-filtered transmission electron microscopy to the characterization of nanoparticles in the environment.
    Utsunomiya S; Ewing RC
    Environ Sci Technol; 2003 Feb; 37(4):786-91. PubMed ID: 12636280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biological electron energy loss spectroscopy in the field-emission scanning transmission electron microscope.
    Leapman RD; Sun SQ; Hunt JA; Andrews SB
    Scanning Microsc Suppl; 1994; 8():245-58; discussion 258-9. PubMed ID: 7638490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elemental mapping using the Ga 3d and In 4d transitions in the epsilon2 absorption spectra derived from EELS.
    Gass MH; Papworth AJ; Bullough TJ; Chalker PR
    Ultramicroscopy; 2004 Nov; 101(2-4):257-64. PubMed ID: 15450671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of quantitative electron energy loss spectroscopy in the low loss region: phosphorus L-edge.
    Wang YY; Ho R; Shao Z; Somlyo AP
    Ultramicroscopy; 1992; 41(1-3):11-31. PubMed ID: 1641912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative electron energy loss spectroscopy in biology.
    Leapman RD; Ornberg RL
    Ultramicroscopy; 1988; 24(2-3):251-68. PubMed ID: 3281358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of low calcium concentrations in cryosectioned cells by parallel-EELS mapping.
    Leapman RD; Hunt JA; Buchanan RA; Andrews SB
    Ultramicroscopy; 1993 Feb; 49(1-4):225-34. PubMed ID: 8475601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Practical spatial resolution of electron energy loss spectroscopy in aberration corrected scanning transmission electron microscopy.
    Shah AB; Ramasse QM; Wen JG; Bhattacharya A; Zuo JM
    Micron; 2011 Aug; 42(6):539-46. PubMed ID: 21376607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical bioimaging for the subcellular localization of trace elements by high contrast TEM, TEM/X-EDS, and NanoSIMS.
    Penen F; Malherbe J; Isaure MP; Dobritzsch D; Bertalan I; Gontier E; Le Coustumer P; Schaumlöffel D
    J Trace Elem Med Biol; 2016 Sep; 37():62-68. PubMed ID: 27288221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron energy-loss spectroscopy as a tool for elemental analysis in biological specimens.
    Kapp N; Studer D; Gehr P; Geiser M
    Methods Mol Biol; 2007; 369():431-47. PubMed ID: 17656763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid pixel direct detector for electron energy loss spectroscopy.
    Plotkin-Swing B; Corbin GJ; De Carlo S; Dellby N; Hoermann C; Hoffman MV; Lovejoy TC; Meyer CE; Mittelberger A; Pantelic R; Piazza L; Krivanek OL
    Ultramicroscopy; 2020 Oct; 217():113067. PubMed ID: 32801089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater.
    Chowdhury S; Balasubramanian R
    Adv Colloid Interface Sci; 2014 Feb; 204():35-56. PubMed ID: 24412086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of biological macromolecules by combined mass mapping and electron energy-loss spectroscopy.
    Leapman RD; Andrews SB
    J Microsc; 1992 Feb; 165(Pt 2):225-38. PubMed ID: 1564721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.