BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 8239)

  • 1. Seasonal and thermal effects on the concentration of the haemolymph in the New Zealand freshwater crayfish Paranephrops zealandicus white.
    Wong TM; Freeman RF
    Comp Biochem Physiol A Comp Physiol; 1976; 55(1):17-22. PubMed ID: 8239
    [No Abstract]   [Full Text] [Related]  

  • 2. Haemolymph concentrations of two species of New Zealand freshwater crayfish in relation to the concentration of their external media.
    Wong TM; Freeman RF
    Comp Biochem Physiol A Comp Physiol; 1976; 55(1):13-6. PubMed ID: 8238
    [No Abstract]   [Full Text] [Related]  

  • 3. Osmotic and ionic regulation in different populations of the new zealand freshwater crayfish Paranephrops zealandicus.
    Wong TM; Freeman RF
    J Exp Biol; 1976 Jun; 64(3):645-63. PubMed ID: 932633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blood glucose in crayfish--I. Variations associated with molting.
    Telford M
    Comp Biochem Physiol A Comp Physiol; 1974 Feb; 47(2):461-8. PubMed ID: 4156207
    [No Abstract]   [Full Text] [Related]  

  • 5. Behavioural, physiological and biochemical responses to aquatic hypoxia in the freshwater crayfish, Paranephrops zealandicus.
    Broughton RJ; Marsden ID; Hill JV; Glover CN
    Comp Biochem Physiol A Mol Integr Physiol; 2017 Oct; 212():72-80. PubMed ID: 28756185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ionic and osmotic regulation and metabolic response to salinity of juvenile Callinectes Sapidus Rathbun.
    Leffler CW
    Comp Biochem Physiol A Comp Physiol; 1975 Nov; 52(3):545-9. PubMed ID: 241556
    [No Abstract]   [Full Text] [Related]  

  • 7. Genotoxic, physiological and immunological effects caused by temperature increase, air exposure or food deprivation in freshwater crayfish Astacus leptodactylus.
    Malev O; Srut M; Maguire I; Stambuk A; Ferrero EA; Lorenzon S; Klobucar GI
    Comp Biochem Physiol C Toxicol Pharmacol; 2010 Nov; 152(4):433-43. PubMed ID: 20667483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of the crustacean hyperglycemic hormone (CHH) in the physiological compensation of the freshwater crayfish Cherax quadricarinatus to low temperature and high salinity stress.
    Prymaczok NC; Pasqualino VM; Viau VE; Rodríguez EM; Medesani DA
    J Comp Physiol B; 2016 Feb; 186(2):181-91. PubMed ID: 26660884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hemolymph DNA concentrations during the molting cycle of the fresh water crayfish, Procambarus clarkii.
    Elzen G; Kamm R
    Comp Biochem Physiol A Comp Physiol; 1974 Aug; 48(4):681-6. PubMed ID: 4152110
    [No Abstract]   [Full Text] [Related]  

  • 10. Amino acids in haemolymph, single fibres and whole muscle from the claw of freshwater crayfish acclimated to different osmotic environments.
    Dooley PC; Long BM; West JM
    Comp Biochem Physiol A Mol Integr Physiol; 2000 Oct; 127(2):155-65. PubMed ID: 11064283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of salinity and temperature on the ion levels in the hemolymph of the blue crab, Callinectes sapidus, Rathbun.
    Engel DW; Davis EM; Smith DE; Angelovic JW
    Comp Biochem Physiol A Comp Physiol; 1974 Oct; 49(2A):259-66. PubMed ID: 4153717
    [No Abstract]   [Full Text] [Related]  

  • 12. Mitochondrial phylogeography of New Zealand freshwater crayfishes, Paranephrops spp.
    Apte S; Smith PJ; Wallis GP
    Mol Ecol; 2007 May; 16(9):1897-908. PubMed ID: 17444900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Allometric relationship of postmolt net ion uptake, ventilation, and circulation in the freshwater crayfish Procambarus clarkii: intraspecific scaling.
    Zanotto FP; Wheatly MG; Reiber CL; Gannon AT; Jalles-Filho E
    Physiol Biochem Zool; 2004; 77(2):275-84. PubMed ID: 15095247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptomic characterisation of neuropeptides and their putative cognate G protein-coupled receptors during late embryo and stage-1 juvenile development of the Aotearoa-New Zealand crayfish, Paranephrops zealandicus.
    Oliphant A; Hawkes MKN; Cridge AG; Dearden PK
    Gen Comp Endocrinol; 2020 Jun; 292():113443. PubMed ID: 32097662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ionic composition and distribution of myogen proteins in the tail muscle of fresh water crayfish.
    Cox JA; Kohler L; Benzonana G
    Comp Biochem Physiol B; 1976; 53(1):101-5. PubMed ID: 1248208
    [No Abstract]   [Full Text] [Related]  

  • 16. Osmoregulation in Onymacris rugatipennis, a free-ranging tenebrionid beetle from the Namib Desert.
    Naidu SG
    Comp Biochem Physiol A Mol Integr Physiol; 2001 Jul; 129(4):873-85. PubMed ID: 11440873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion concentrations and pH of the hemolymph of the scorpions Hadrurus arizonensis and Paruroctonus mesaensis.
    Bowerman RF
    Comp Biochem Physiol A Comp Physiol; 1976; 54(3):331-3. PubMed ID: 5224
    [No Abstract]   [Full Text] [Related]  

  • 18. Crayfish ventral nerve cord and hemolymph: content of free amino acids and other metabolites.
    Lin S; Cohen HP
    Comp Biochem Physiol B; 1973 May; 45(1):249-63. PubMed ID: 4719991
    [No Abstract]   [Full Text] [Related]  

  • 19. Phosphorus fractions of crayfish haemolymph, serum and haemocyanin.
    Gondko R; Helszer Z; Adamska M
    Acta Biochim Pol; 1985; 32(3):251-7. PubMed ID: 4090857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of rapid and slow dehydration on the hemolymph osmolarity and Na+-K+ concentration in the millipede Pachydesmus crassicutis.
    Woodring JP
    Comp Biochem Physiol A Comp Physiol; 1974 Sep; 49(1A):115-9. PubMed ID: 4153670
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.