These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 8239)
1. Seasonal and thermal effects on the concentration of the haemolymph in the New Zealand freshwater crayfish Paranephrops zealandicus white. Wong TM; Freeman RF Comp Biochem Physiol A Comp Physiol; 1976; 55(1):17-22. PubMed ID: 8239 [No Abstract] [Full Text] [Related]
2. Haemolymph concentrations of two species of New Zealand freshwater crayfish in relation to the concentration of their external media. Wong TM; Freeman RF Comp Biochem Physiol A Comp Physiol; 1976; 55(1):13-6. PubMed ID: 8238 [No Abstract] [Full Text] [Related]
3. Osmotic and ionic regulation in different populations of the new zealand freshwater crayfish Paranephrops zealandicus. Wong TM; Freeman RF J Exp Biol; 1976 Jun; 64(3):645-63. PubMed ID: 932633 [TBL] [Abstract][Full Text] [Related]
4. Blood glucose in crayfish--I. Variations associated with molting. Telford M Comp Biochem Physiol A Comp Physiol; 1974 Feb; 47(2):461-8. PubMed ID: 4156207 [No Abstract] [Full Text] [Related]
5. Behavioural, physiological and biochemical responses to aquatic hypoxia in the freshwater crayfish, Paranephrops zealandicus. Broughton RJ; Marsden ID; Hill JV; Glover CN Comp Biochem Physiol A Mol Integr Physiol; 2017 Oct; 212():72-80. PubMed ID: 28756185 [TBL] [Abstract][Full Text] [Related]
6. Ionic and osmotic regulation and metabolic response to salinity of juvenile Callinectes Sapidus Rathbun. Leffler CW Comp Biochem Physiol A Comp Physiol; 1975 Nov; 52(3):545-9. PubMed ID: 241556 [No Abstract] [Full Text] [Related]
7. Genotoxic, physiological and immunological effects caused by temperature increase, air exposure or food deprivation in freshwater crayfish Astacus leptodactylus. Malev O; Srut M; Maguire I; Stambuk A; Ferrero EA; Lorenzon S; Klobucar GI Comp Biochem Physiol C Toxicol Pharmacol; 2010 Nov; 152(4):433-43. PubMed ID: 20667483 [TBL] [Abstract][Full Text] [Related]
8. Involvement of the crustacean hyperglycemic hormone (CHH) in the physiological compensation of the freshwater crayfish Cherax quadricarinatus to low temperature and high salinity stress. Prymaczok NC; Pasqualino VM; Viau VE; RodrÃguez EM; Medesani DA J Comp Physiol B; 2016 Feb; 186(2):181-91. PubMed ID: 26660884 [TBL] [Abstract][Full Text] [Related]
9. Hemolymph DNA concentrations during the molting cycle of the fresh water crayfish, Procambarus clarkii. Elzen G; Kamm R Comp Biochem Physiol A Comp Physiol; 1974 Aug; 48(4):681-6. PubMed ID: 4152110 [No Abstract] [Full Text] [Related]
10. Amino acids in haemolymph, single fibres and whole muscle from the claw of freshwater crayfish acclimated to different osmotic environments. Dooley PC; Long BM; West JM Comp Biochem Physiol A Mol Integr Physiol; 2000 Oct; 127(2):155-65. PubMed ID: 11064283 [TBL] [Abstract][Full Text] [Related]
11. The effect of salinity and temperature on the ion levels in the hemolymph of the blue crab, Callinectes sapidus, Rathbun. Engel DW; Davis EM; Smith DE; Angelovic JW Comp Biochem Physiol A Comp Physiol; 1974 Oct; 49(2A):259-66. PubMed ID: 4153717 [No Abstract] [Full Text] [Related]
12. Mitochondrial phylogeography of New Zealand freshwater crayfishes, Paranephrops spp. Apte S; Smith PJ; Wallis GP Mol Ecol; 2007 May; 16(9):1897-908. PubMed ID: 17444900 [TBL] [Abstract][Full Text] [Related]
13. Allometric relationship of postmolt net ion uptake, ventilation, and circulation in the freshwater crayfish Procambarus clarkii: intraspecific scaling. Zanotto FP; Wheatly MG; Reiber CL; Gannon AT; Jalles-Filho E Physiol Biochem Zool; 2004; 77(2):275-84. PubMed ID: 15095247 [TBL] [Abstract][Full Text] [Related]
14. Transcriptomic characterisation of neuropeptides and their putative cognate G protein-coupled receptors during late embryo and stage-1 juvenile development of the Aotearoa-New Zealand crayfish, Paranephrops zealandicus. Oliphant A; Hawkes MKN; Cridge AG; Dearden PK Gen Comp Endocrinol; 2020 Jun; 292():113443. PubMed ID: 32097662 [TBL] [Abstract][Full Text] [Related]
15. Ionic composition and distribution of myogen proteins in the tail muscle of fresh water crayfish. Cox JA; Kohler L; Benzonana G Comp Biochem Physiol B; 1976; 53(1):101-5. PubMed ID: 1248208 [No Abstract] [Full Text] [Related]
16. Osmoregulation in Onymacris rugatipennis, a free-ranging tenebrionid beetle from the Namib Desert. Naidu SG Comp Biochem Physiol A Mol Integr Physiol; 2001 Jul; 129(4):873-85. PubMed ID: 11440873 [TBL] [Abstract][Full Text] [Related]
17. Ion concentrations and pH of the hemolymph of the scorpions Hadrurus arizonensis and Paruroctonus mesaensis. Bowerman RF Comp Biochem Physiol A Comp Physiol; 1976; 54(3):331-3. PubMed ID: 5224 [No Abstract] [Full Text] [Related]
18. Crayfish ventral nerve cord and hemolymph: content of free amino acids and other metabolites. Lin S; Cohen HP Comp Biochem Physiol B; 1973 May; 45(1):249-63. PubMed ID: 4719991 [No Abstract] [Full Text] [Related]
19. Phosphorus fractions of crayfish haemolymph, serum and haemocyanin. Gondko R; Helszer Z; Adamska M Acta Biochim Pol; 1985; 32(3):251-7. PubMed ID: 4090857 [TBL] [Abstract][Full Text] [Related]
20. Effects of rapid and slow dehydration on the hemolymph osmolarity and Na+-K+ concentration in the millipede Pachydesmus crassicutis. Woodring JP Comp Biochem Physiol A Comp Physiol; 1974 Sep; 49(1A):115-9. PubMed ID: 4153670 [No Abstract] [Full Text] [Related] [Next] [New Search]