These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 8239089)

  • 1. Influence of the viscoelastic properties of the respiratory system on the energetically optimum breathing frequency.
    Bates JH; Milic-Emili J
    Ann Biomed Eng; 1993; 21(5):489-99. PubMed ID: 8239089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of time-domain analyses for estimation of low-frequency respiratory mechanical properties and impedance spectra.
    Kaczka DW; Barnas GM; Suki B; Lutchen KR
    Ann Biomed Eng; 1995; 23(2):135-51. PubMed ID: 7605051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The low-frequency dependence of respiratory system resistance and elastance in normal dogs.
    Bates JH; Shardonofsky F; Stewart DE
    Respir Physiol; 1989 Dec; 78(3):369-82. PubMed ID: 2616930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bedside assessment of respiratory viscoelastic properties in ventilated patients.
    Antonaglia V; Peratoner A; De Simoni L; Gullo A; Milic-Emili J; Zin WA
    Eur Respir J; 2000 Aug; 16(2):302-8. PubMed ID: 10968507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-frequency respiratory system resistance in the normal dog during mechanical ventilation.
    Sato J; Davey BL; Shardonofsky F; Bates JH
    J Appl Physiol (1985); 1991 Apr; 70(4):1536-43. PubMed ID: 2055833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Techniques for measuring respiratory mechanics: an analytic approach with a viscoelastic model.
    Lorino AM; Harf A
    J Appl Physiol (1985); 1993 May; 74(5):2373-9. PubMed ID: 8335570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A nonlinear viscoelastic model of lung tissue mechanics.
    Suki B; Bates JH
    J Appl Physiol (1985); 1991 Sep; 71(3):826-33. PubMed ID: 1757318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human lung impedance from spontaneous breathing frequencies to 32 Hz.
    Farré R; Peslin R; Rotger M; Navajas D
    J Appl Physiol (1985); 1994 Mar; 76(3):1176-83. PubMed ID: 8005861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal ventilatory patterns in periodic breathing.
    Ghazanshahi SD; Khoo MC
    Ann Biomed Eng; 1993; 21(5):517-30. PubMed ID: 8239092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ambulatory monitoring of respiration: inhibitory breathing in the natural environment.
    Anderson DE; Coyle K; Haythornthwaite JA
    Psychophysiology; 1992 Sep; 29(5):551-7. PubMed ID: 1410184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow.
    Raghu R; Vignon-Clementel IE; Figueroa CA; Taylor CA
    J Biomech Eng; 2011 Aug; 133(8):081003. PubMed ID: 21950896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model of the spontaneously breathing patient: applications to intrinsic PEEP and work of breathing.
    Schuessler TF; Gottfried SB; Bates JH
    J Appl Physiol (1985); 1997 May; 82(5):1694-703. PubMed ID: 9134921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relative effects of submersion and increased pressure on respiratory mechanics, work, and energy cost of breathing.
    Held HE; Pendergast DR
    J Appl Physiol (1985); 2013 Mar; 114(5):578-91. PubMed ID: 23305982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inspiratory work with and without continuous positive airway pressure in patients with acute respiratory failure.
    Katz JA; Marks JD
    Anesthesiology; 1985 Dec; 63(6):598-607. PubMed ID: 3904528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-compartment modelling of respiratory system mechanics at low frequencies: gas redistribution or tissue rheology?
    Similowski T; Bates JH
    Eur Respir J; 1991 Mar; 4(3):353-8. PubMed ID: 1864351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dependencies of respiratory system resistance and elastance on amplitude and frequency in the normal range of breathing.
    Barnas GM; Mills PJ; Mackenzie CF; Ashby M; Sexton WL; Imle PC; Wilson PD
    Am Rev Respir Dis; 1991 Feb; 143(2):240-4. PubMed ID: 1990935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of flow pattern on the parameter estimates of a simple breathing mechanics model.
    Avanzolini G; Barbini P; Cappello A; Cevenini G
    IEEE Trans Biomed Eng; 1995 Apr; 42(4):394-402. PubMed ID: 7729838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Respiratory resistance with histamine challenge by single-breath and forced oscillation methods.
    Bates JH; Decramer M; Zin WA; Harf A; Milic-Emili J; Chang HK
    J Appl Physiol (1985); 1986 Sep; 61(3):873-80. PubMed ID: 3759771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanics of respiratory system in healthy anesthetized humans with emphasis on viscoelastic properties.
    Jonson B; Beydon L; Brauer K; MÃ¥nsson C; Valind S; Grytzell H
    J Appl Physiol (1985); 1993 Jul; 75(1):132-40. PubMed ID: 8376259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ventilatory muscle loads and the frequency-tidal volume pattern during inspiratory pressure-assisted (pressure-supported) ventilation.
    MacIntyre NR; Leatherman NE
    Am Rev Respir Dis; 1990 Feb; 141(2):327-31. PubMed ID: 2405758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.