These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 8239095)

  • 21. Model implications of gas exchange dynamics on blood gases in incremental exercise.
    Lamarra N; Ward SA; Whipp BJ
    J Appl Physiol (1985); 1989 Apr; 66(4):1539-46. PubMed ID: 2499567
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Does the threshold of transcutaneous partial pressure of carbon dioxide represent the respiratory compensation point or anaerobic threshold?
    Liu Y; Steinacker JM; Stauch M
    Eur J Appl Physiol Occup Physiol; 1995; 71(4):326-31. PubMed ID: 8549575
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transition from exercise to rest. Ventilatory and arterial blood gas responses.
    O'Neill AV; Johnson DC
    Chest; 1991 May; 99(5):1145-50. PubMed ID: 1902160
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effects of low levels of CO2 on ventilation during rest and exercise.
    Loeppky JA
    Aviat Space Environ Med; 1998 Apr; 69(4):368-73. PubMed ID: 9561284
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Alveolar gas exchange during exercise: a single-breath analysis.
    Allen CJ; Jones NL; Killian KJ
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Dec; 57(6):1704-9. PubMed ID: 6439704
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of the end-tidal arterial PCO2 gradient during exercise in normal subjects and in patients with severe COPD.
    Liu Z; Vargas F; Stansbury D; Sasse SA; Light RW
    Chest; 1995 May; 107(5):1218-24. PubMed ID: 7750309
    [TBL] [Abstract][Full Text] [Related]  

  • 27. When does apparatus dead space matter for the pediatric patient?
    Pearsall MF; Feldman JM
    Anesth Analg; 2014 Apr; 118(4):776-80. PubMed ID: 24651232
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of reducing anatomic dead space on arterial PCO2 during CO2 inhalation.
    Forster HV; Pan LG; Bisgard GE; Flynn C; Hoffer RE
    J Appl Physiol (1985); 1986 Aug; 61(2):728-33. PubMed ID: 3091574
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ventilatory control during exercise in normal children.
    Nagano Y; Baba R; Kuraishi K; Yasuda T; Ikoma M; Nishibata K; Yokota M; Nagashima M
    Pediatr Res; 1998 May; 43(5):704-7. PubMed ID: 9585019
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Validation of a maskless CO2-response test for sleep and infant studies.
    Naifeh KH; Severinghaus JW
    J Appl Physiol (1985); 1988 Jan; 64(1):391-6. PubMed ID: 3128528
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Serotonin is necessary for short-term modulation of the exercise ventilatory response.
    Bach KB; Lutcavage ME; Mitchell GS
    Respir Physiol; 1993 Jan; 91(1):57-70. PubMed ID: 8441871
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Measurement of arterial blood gases at the transition from exercise to rest.
    Lewis BM
    J Appl Physiol Respir Environ Exerc Physiol; 1983 May; 54(5):1340-4. PubMed ID: 6408046
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ventilatory response to inspired CO2 in normal and carotid body-denervated ponies.
    Klein JP; Forster HV; Bisgard GE; Kaminski RP; Pan LG; Hamilton LH
    J Appl Physiol Respir Environ Exerc Physiol; 1982 Jun; 52(6):1614-22. PubMed ID: 6809719
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Open loop-gain of the CO2 ventilatory control system.
    Suwa K; Matsushita F
    Tohoku J Exp Med; 1985 Sep; 147(1):97-106. PubMed ID: 3934795
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Clinical usefulness of end-tidal CO
    Ramos RP; Ferreira EVM; Valois FM; Cepeda A; Messina CMS; Oliveira RK; Araújo ATV; Teles CA; Neder JA; Nery LE; Ota-Arakaki JS
    Respir Med; 2016 Nov; 120():70-77. PubMed ID: 27817818
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carbon dioxide chemosensitivity and exercise ventilation in healthy children and in children with cystic fibrosis.
    Pianosi P; Wolstein R
    Pediatr Res; 1996 Sep; 40(3):508-13. PubMed ID: 8865292
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of PaCO2 and ventilation in humans inspiring low levels of CO2.
    Forster HV; Klein JP; Hamilton LH; Kampine JP
    J Appl Physiol Respir Environ Exerc Physiol; 1982 Feb; 52(2):287-94. PubMed ID: 6800988
    [TBL] [Abstract][Full Text] [Related]  

  • 38. How does positive end-expiratory pressure decrease CO2 elimination from the lung?
    Breen PH; Mazumdar B
    Respir Physiol; 1996 Mar; 103(3):233-42. PubMed ID: 8738899
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Superiority of transcutaneous CO2 over end-tidal CO2 measurement for monitoring respiratory failure in nonintubated patients: A pilot study.
    Lermuzeaux M; Meric H; Sauneuf B; Girard S; Normand H; Lofaso F; Terzi N
    J Crit Care; 2016 Feb; 31(1):150-6. PubMed ID: 26463320
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deep Breathing Improves End-Tidal Carbon Dioxide Monitoring of an Oxygen Nasal Cannula-Based Capnometry Device in Subjects Extubated After Abdominal Surgery.
    Takaki S; Mizutani K; Fukuchi M; Yoshida T; Idei M; Matsuda Y; Yamaguchi Y; Miyashita T; Nomura T; Yamaguchi O; Goto T
    Respir Care; 2017 Jan; 62(1):86-91. PubMed ID: 27899530
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.