These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
547 related articles for article (PubMed ID: 8239657)
1. Assembly of Atlantic cod (Gadus morhua) brain microtubules at different temperatures: dependency of microtubule-associated proteins is relative to temperature. Wallin M; Billger M; Strömberg T; Strömberg E Arch Biochem Biophys; 1993 Nov; 307(1):200-5. PubMed ID: 8239657 [TBL] [Abstract][Full Text] [Related]
2. Differences in the effect of Ca2+ on isolated microtubules from cod and cow brain. Strömberg E; Wallin M Cell Motil Cytoskeleton; 1994; 28(1):59-68. PubMed ID: 8044850 [TBL] [Abstract][Full Text] [Related]
3. Coassembly of bovine and cod microtubule proteins: the ratio of the different tubulins within hybrid microtubules determines the ability to assemble at low temperatures, MAPs dependency and effects of Ca2+. Wallin M; Billger M Cell Motil Cytoskeleton; 1997; 38(3):297-307. PubMed ID: 9384220 [TBL] [Abstract][Full Text] [Related]
4. Different assembly properties of cod, bovine, and rat brain microtubules. Fridén B; Strömberg E; Wallin M Cell Motil Cytoskeleton; 1992; 21(4):305-12. PubMed ID: 1628326 [TBL] [Abstract][Full Text] [Related]
6. Microtubule-associated proteins-dependent colchicine stability of acetylated cold-labile brain microtubules from the Atlantic cod, Gadus morhua. Billger M; Strömberg E; Wallin M J Cell Biol; 1991 Apr; 113(2):331-8. PubMed ID: 2010465 [TBL] [Abstract][Full Text] [Related]
7. Identification of betaIII- and betaIV-tubulin isotypes in cold-adapted microtubules from Atlantic cod (Gadus morhua): antibody mapping and cDNA sequencing. Modig C; Olsson PE; Barasoain I; de Ines C; Andreu JM; Roach MC; Ludueña RF; Wallin M Cell Motil Cytoskeleton; 1999; 42(4):315-30. PubMed ID: 10223637 [TBL] [Abstract][Full Text] [Related]
8. Comparative study of the colchicine binding site and the assembly of fish and mammalian microtubule proteins. de Pereda JM; Wallin M; Billger M; Andreu JM Cell Motil Cytoskeleton; 1995; 30(2):153-63. PubMed ID: 7606808 [TBL] [Abstract][Full Text] [Related]
9. Comparative effects of cryosolvents on tubulin association, thermal stability, and binding of microtubule-associated proteins. Pajot-Augy E Cryobiology; 1993 Jun; 30(3):286-98. PubMed ID: 8370315 [TBL] [Abstract][Full Text] [Related]
10. Effect of MAP 1, MAP 2, and tau-proteins on structural parameters of tubulin assemblies. Böhm KJ; Vater W; Steinmetzer P; Kusnetsov SA; Rodionov VI; Gelfand VI; Unger E Acta Histochem Suppl; 1990; 39():357-64. PubMed ID: 2127856 [TBL] [Abstract][Full Text] [Related]
11. Distribution of acetylated tubulin in cultured cells and tissues from the Atlantic cod (Gadus morhua). Role of acetylation in cold adaptation and drug stability. Rutberg M; Billger M; Modig C; Wallin M Cell Biol Int; 1995 Sep; 19(9):749-58. PubMed ID: 7581226 [TBL] [Abstract][Full Text] [Related]
12. Dependency of microtubule-associated proteins (MAPs) for tubulin stability and assembly; use of estramustine phosphate in the study of microtubules. Fridén B; Wallin M Mol Cell Biochem; 1991 Jul; 105(2):149-58. PubMed ID: 1681420 [TBL] [Abstract][Full Text] [Related]
13. Identification of a new microtubule-interacting protein Mip-90. González M; Cambiazo V; Maccioni RB Eur J Cell Biol; 1995 Jun; 67(2):158-69. PubMed ID: 7664757 [TBL] [Abstract][Full Text] [Related]
14. Dynamic instability of microtubules from cold-living fishes. Billger M; Wallin M; Williams RC; Detrich HW Cell Motil Cytoskeleton; 1994; 28(4):327-32. PubMed ID: 7954859 [TBL] [Abstract][Full Text] [Related]
15. Expression of cold-adapted beta-tubulins confer cold-tolerance to human cellular microtubules. Modig C; Wallin M; Olsson PE Biochem Biophys Res Commun; 2000 Mar; 269(3):787-91. PubMed ID: 10720493 [TBL] [Abstract][Full Text] [Related]
16. Cyclostreptin (FR182877), an antitumor tubulin-polymerizing agent deficient in enhancing tubulin assembly despite its high affinity for the taxoid site. Edler MC; Buey RM; Gussio R; Marcus AI; Vanderwal CD; Sorensen EJ; Díaz JF; Giannakakou P; Hamel E Biochemistry; 2005 Aug; 44(34):11525-38. PubMed ID: 16114889 [TBL] [Abstract][Full Text] [Related]
17. Deficient nucleation during co-polymerization of mammalian MAP2 and tobacco tubulin. Hugdahl JD; Morejohn LC Biochem Mol Biol Int; 1994 Sep; 34(2):375-84. PubMed ID: 7849649 [TBL] [Abstract][Full Text] [Related]
18. Dynamic instability of microtubules assembled from microtubule-associated protein-free tubulin: neither variability of growth and shortening rates nor "rescue" requires microtubule-associated proteins. Billger MA; Bhattacharjee G; Williams RC Biochemistry; 1996 Oct; 35(42):13656-63. PubMed ID: 8885845 [TBL] [Abstract][Full Text] [Related]
19. Colchicine-binding sites of brain tubulins from an antarctic fish and from a mammal are functionally similar, but not identical: implications for microtubule assembly at low temperature. Skoufias DA; Wilson L; Detrich HW Cell Motil Cytoskeleton; 1992; 21(4):272-80. PubMed ID: 1628324 [TBL] [Abstract][Full Text] [Related]
20. MAP 0, a 400-kDa microtubule-associated protein unique to teleost fish. Modig C; Rutberg M; Detrich HW; Billger M; Strömberg E; Wallin M Cell Motil Cytoskeleton; 1997; 38(3):258-69. PubMed ID: 9384216 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]