BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 8240238)

  • 21. Purification and properties of extracellular phytase from Bacillus sp. KHU-10.
    Choi YM; Suh HJ; Kim JM
    J Protein Chem; 2001 May; 20(4):287-92. PubMed ID: 11594462
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pathway of dephosphorylation of myo-inositol hexakisphosphate by phytases of legume seeds.
    Greiner R; Larsson Alminger M; Carlsson NG; Muzquiz M; Burbano C; Cuadrado C; Pedrosa MM; Goyoaga C
    J Agric Food Chem; 2002 Nov; 50(23):6865-70. PubMed ID: 12405789
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Purification and properties of a phytate-degrading enzyme from Pantoea agglomerans.
    Greiner R
    Protein J; 2004 Nov; 23(8):567-76. PubMed ID: 15648978
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Isolation and characterization of a novel phytase from Penicillium simplicissimum.
    Tseng YH; Fang TJ; Tseng SM
    Folia Microbiol (Praha); 2000; 45(2):121-7. PubMed ID: 11271818
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Alkaline phytase from Lilium longiflorum: purification and structural characterization.
    Garchow BG; Jog SP; Mehta BD; Monosso JM; Murthy PP
    Protein Expr Purif; 2006 Apr; 46(2):221-32. PubMed ID: 16198125
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Purification and characterization of two phytases from Escherichia coli.
    Greiner R; Konietzny U; Jany KD
    Arch Biochem Biophys; 1993 May; 303(1):107-13. PubMed ID: 8387749
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Purification and characterization of a phytase from Pseudomonas syringae MOK1.
    Cho JS; Lee CW; Kang SH; Lee JC; Bok JD; Moon YS; Lee HG; Kim SC; Choi YJ
    Curr Microbiol; 2003 Oct; 47(4):290-4. PubMed ID: 14629009
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Purification and characterization of a novel neutral and heat-tolerant phytase from a newly isolated strain Bacillus nealsonii ZJ0702.
    Yu P; Chen Y
    BMC Biotechnol; 2013 Sep; 13():78. PubMed ID: 24073799
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expression, gene cloning, and characterization of five novel phytases from four basidiomycete fungi: Peniophora lycii, Agrocybe pediades, a Ceriporia sp., and Trametes pubescens.
    Lassen SF; Breinholt J; Østergaard PR; Brugger R; Bischoff A; Wyss M; Fuglsang CC
    Appl Environ Microbiol; 2001 Oct; 67(10):4701-7. PubMed ID: 11571175
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Purification and physico-chemical characterisation of genetically modified phytases expressed in Aspergillus awamori.
    Martin JA; Murphy RA; Power RF
    Bioresour Technol; 2006 Sep; 97(14):1703-8. PubMed ID: 16243522
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Activity of Escherichia coli, Aspergillus niger, and Rye Phytase toward Partially Phosphorylated myo-Inositol Phosphates.
    Greiner R
    J Agric Food Chem; 2017 Nov; 65(44):9603-9607. PubMed ID: 29052415
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crystal structures of Bacillus alkaline phytase in complex with divalent metal ions and inositol hexasulfate.
    Zeng YF; Ko TP; Lai HL; Cheng YS; Wu TH; Ma Y; Chen CC; Yang CS; Cheng KJ; Huang CH; Guo RT; Liu JR
    J Mol Biol; 2011 Jun; 409(2):214-24. PubMed ID: 21463636
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect.
    Idriss EE; Makarewicz O; Farouk A; Rosner K; Greiner R; Bochow H; Richter T; Borriss R
    Microbiology (Reading); 2002 Jul; 148(Pt 7):2097-2109. PubMed ID: 12101298
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biochemical Characterization of a Psychrophilic Phytase from an Artificially Cultivable Morel Morchella importuna.
    Tan H; Tang J; Li X; Liu T; Miao R; Huang Z; Wang Y; Gan B; Peng W
    J Microbiol Biotechnol; 2017 Dec; 27(12):2180-2189. PubMed ID: 29017237
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biochemical properties and substrate specificities of alkaline and histidine acid phytases.
    Oh BC; Choi WC; Park S; Kim YO; Oh TK
    Appl Microbiol Biotechnol; 2004 Jan; 63(4):362-72. PubMed ID: 14586576
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Purification, sequencing and evaluation of a divergent phytase from Penicillium oxalicum KCTC6440.
    Kim BH; Lee JY; Lee PC
    J Gen Appl Microbiol; 2015; 61(4):117-23. PubMed ID: 26377131
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel purple acid phytase from an earthworm cast bacterium.
    Ghorbani Nasrabadi R; Greiner R; Yamchi A; Nourzadeh Roshan E
    J Sci Food Agric; 2018 Aug; 98(10):3667-3674. PubMed ID: 29266239
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure of two maize phytase genes and their spatio-temporal expression during seedling development.
    Maugenest S; Martinez I; Godin B; Perez P; Lescure AM
    Plant Mol Biol; 1999 Feb; 39(3):503-14. PubMed ID: 10092178
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inositol phosphate phosphatases of microbiological origin: the inositol pentaphosphate products of Aspergillus ficuum phytases.
    Irving GC; Cosgrove DJ
    J Bacteriol; 1972 Oct; 112(1):434-8. PubMed ID: 4342816
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cloning and characterization of purple acid phosphatase phytases from wheat, barley, maize, and rice.
    Dionisio G; Madsen CK; Holm PB; Welinder KG; Jørgensen M; Stoger E; Arcalis E; Brinch-Pedersen H
    Plant Physiol; 2011 Jul; 156(3):1087-100. PubMed ID: 21220762
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.