These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
461 related articles for article (PubMed ID: 8240251)
21. Subcellular evidence for the involvement of peroxisomes in plant isoprenoid biosynthesis. Clastre M; Papon N; Courdavault V; Giglioli-Guivarc'h N; St-Pierre B; Simkin AJ Plant Signal Behav; 2011 Dec; 6(12):2044-6. PubMed ID: 22080790 [TBL] [Abstract][Full Text] [Related]
22. Carbon partitioning to the terpenoid biosynthetic pathway enables heterologous β-phellandrene production in Escherichia coli cultures. Formighieri C; Melis A Arch Microbiol; 2014 Dec; 196(12):853-61. PubMed ID: 25116411 [TBL] [Abstract][Full Text] [Related]
23. Biosynthesis of 2-methyl-3-buten-2-ol emitted from needles of Pinus ponderosa via the non-mevalonate DOXP/MEP pathway of isoprenoid formation. Zeidler J; Lichtenthaler HK Planta; 2001 Jun; 213(2):323-6. PubMed ID: 11469599 [TBL] [Abstract][Full Text] [Related]
24. Diversity of the biosynthesis of the isoprene units. Kuzuyama T; Seto H Nat Prod Rep; 2003 Apr; 20(2):171-83. PubMed ID: 12735695 [TBL] [Abstract][Full Text] [Related]
25. Dedicated roles of plastid transketolases during the early onset of isoprenoid biogenesis in pepper fruits1. Bouvier F; d'Harlingue A; Suire C; Backhaus RA; Camara B Plant Physiol; 1998 Aug; 117(4):1423-31. PubMed ID: 9701598 [TBL] [Abstract][Full Text] [Related]
27. The iridoid glucoside secologanin is derived from the novel triose phosphate/pyruvate pathway in a Catharanthus roseus cell culture. Contin A; van der Heijden R; Lefeber AW; Verpoorte R FEBS Lett; 1998 Sep; 434(3):413-6. PubMed ID: 9742965 [TBL] [Abstract][Full Text] [Related]
28. Prokaryotic hopanoids: the biosynthesis of the bacteriohopane skeleton. Formation of isoprenic units from two distinct acetate pools and a novel type of carbon/carbon linkage between a triterpene and D-ribose. Flesch G; Rohmer M Eur J Biochem; 1988 Aug; 175(2):405-11. PubMed ID: 3136017 [TBL] [Abstract][Full Text] [Related]
29. An alternative pathway for the biosynthesis of isoprenoid compounds in bacteria. Pandian S; Saengchjan S; Raman TS Biochem J; 1981 Jun; 196(3):675-81. PubMed ID: 6274317 [TBL] [Abstract][Full Text] [Related]
30. Orthologs of the archaeal isopentenyl phosphate kinase regulate terpenoid production in plants. Henry LK; Gutensohn M; Thomas ST; Noel JP; Dudareva N Proc Natl Acad Sci U S A; 2015 Aug; 112(32):10050-5. PubMed ID: 26216978 [TBL] [Abstract][Full Text] [Related]
31. The non-mevalonate pathway of isoprenoids: genes, enzymes and intermediates. Rohdich F; Kis K; Bacher A; Eisenreich W Curr Opin Chem Biol; 2001 Oct; 5(5):535-40. PubMed ID: 11578926 [TBL] [Abstract][Full Text] [Related]
32. Biosynthetic origins of the isoprene units of gaudichaudianic acid in Piper gaudichaudianum (Piperaceae). Lopes AA; Baldoqui DC; López SN; Kato MJ; Bolzani Vda S; Furlan M Phytochemistry; 2007 Aug; 68(15):2053-8. PubMed ID: 17574633 [TBL] [Abstract][Full Text] [Related]
33. Studies on isoprenoid biosynthesis with bacterial intact cells. Takatsuji H; Nishino T; Miki I; Katsuki H Biochem Biophys Res Commun; 1983 Jan; 110(1):187-93. PubMed ID: 6838508 [TBL] [Abstract][Full Text] [Related]
34. Mevalonate and nonmevalonate pathways for the biosynthesis of isoprene units. Kuzuyama T Biosci Biotechnol Biochem; 2002 Aug; 66(8):1619-27. PubMed ID: 12353619 [TBL] [Abstract][Full Text] [Related]
35. Involvement of the mevalonic acid pathway and the glyceraldehyde-pyruvate pathway in terpenoid biosynthesis of the liverworts Ricciocarpos natans and Conocephalum conicum. Adam KP; Thiel R; Zapp J; Becker H Arch Biochem Biophys; 1998 Jun; 354(1):181-7. PubMed ID: 9633614 [TBL] [Abstract][Full Text] [Related]
36. Isoprenoid biosynthesis via a mevalonate-independent pathway in plants: cloning and heterologous expression of 1-deoxy-D-xylulose-5-phosphate reductoisomerase from peppermint. Lange BM; Croteau R Arch Biochem Biophys; 1999 May; 365(1):170-4. PubMed ID: 10222052 [TBL] [Abstract][Full Text] [Related]
37. Exploring natural biodiversity to expand access to microbial terpene synthesis. Rico J; Duquesne K; Petit JL; Mariage A; Darii E; Peruch F; de Berardinis V; Iacazio G Microb Cell Fact; 2019 Feb; 18(1):23. PubMed ID: 30709396 [TBL] [Abstract][Full Text] [Related]
38. Incorporation of 1-deoxy-D-xylulose into isoprene and phytol by higher plants and algae. Schwender J; Zeidler J; Gröner R; Müller C; Focke M; Braun S; Lichtenthaler FW; Lichtenthaler HK FEBS Lett; 1997 Sep; 414(1):129-34. PubMed ID: 9305746 [TBL] [Abstract][Full Text] [Related]
39. A family of transketolases that directs isoprenoid biosynthesis via a mevalonate-independent pathway. Lange BM; Wildung MR; McCaskill D; Croteau R Proc Natl Acad Sci U S A; 1998 Mar; 95(5):2100-4. PubMed ID: 9482845 [TBL] [Abstract][Full Text] [Related]
40. Structure-based drug design targeting biosynthesis of isoprenoids: a crystallographic state of the art of the involved enzymes. de Ruyck J; Wouters J Curr Protein Pept Sci; 2008 Apr; 9(2):117-137. PubMed ID: 18393884 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]