These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 8240305)

  • 21. Mathematical analysis of kinetic data from enzyme reaction in the steady state.
    Feraudi M; Glaser W
    Ital J Biochem; 1977; 26(1):22-6. PubMed ID: 266487
    [No Abstract]   [Full Text] [Related]  

  • 22. Random pathway models and their application to steady-state enzyme kinetics.
    Fisher JR; Priest DG; Barton JS
    J Theor Biol; 1972 Nov; 37(2):335-52. PubMed ID: 4652945
    [No Abstract]   [Full Text] [Related]  

  • 23. Sigmoidal substrate saturation curves in Michaelis-Menten mechanism as an artefact.
    Fischer E; Keleti T
    Acta Biochim Biophys Acad Sci Hung; 1975; 10(3):221-7. PubMed ID: 1211106
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of conformational dynamics in kinetics of an enzymatic cycle in a nonequilibrium steady state.
    Min W; Xie XS; Bagchi B
    J Chem Phys; 2009 Aug; 131(6):065104. PubMed ID: 19691414
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition and activation of enzymes. The effect of a modifier on the reaction rate and on kinetic parameters.
    Fontes R; Ribeiro JM; Sillero A
    Acta Biochim Pol; 2000; 47(1):233-57. PubMed ID: 10961698
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quasi-steady-state kinetics at enzyme and substrate concentrations in excess of the Michaelis-Menten constant.
    Rami Tzafriri A; Edelman ER
    J Theor Biol; 2007 Apr; 245(4):737-48. PubMed ID: 17234216
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Generalization of the Monod-Wyman-Changeux model for the case of multisubstrate reactions].
    Popova SV; Sel'kov EE
    Mol Biol (Mosk); 1976; 10(5):1116-26. PubMed ID: 1053074
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deviations from Michaelis-Menten kinetics. The possibility of complicated curves for simple kinetic schemes and the computer fitting of experimental data for acetylcholinesterase, acid phosphatase, adenosine deaminase, arylsulphatase, benzylamine oxidase, chymotrypsin, fumarase, galactose dehydrogenase, beta-galactosidase, lactate dehydrogenase, peroxidase and xanthine oxidase.
    Bardsley WG; Leff P; Kavanagh J; Waight RD
    Biochem J; 1980 Jun; 187(3):739-65. PubMed ID: 6821369
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In defence of the general validity of the Cha method of deriving rate equations. The importance of explicit recognition of the thermodynamic box in enzyme kinetics.
    Topham CM; Brocklehurst K
    Biochem J; 1992 Feb; 282 ( Pt 1)(Pt 1):261-5. PubMed ID: 1540141
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On an alleged exception to generalized microscopic reversibility as a condition for reduction in degree of steady-state kinetic equations.
    Whithead EP
    Biochem J; 1981 Nov; 199(2):461-2. PubMed ID: 7340814
    [No Abstract]   [Full Text] [Related]  

  • 31. [Stationary kinetics of multisubstrate enzymatic reactions. Inhibition by reaction products, reversible and irreversible inhibitors].
    Vrzheshch PV
    Biokhimiia; 1988 Oct; 53(10):1704-11. PubMed ID: 3233227
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Patterns of apparent co-operativity of the steady-state of a simple non-equilibrium random substrate-modifier mechanism [proceedings].
    Whitehead EP; Egmond MR
    Biochem Soc Trans; 1977; 5(3):789-90. PubMed ID: 902915
    [No Abstract]   [Full Text] [Related]  

  • 33. Validity of the Michaelis-Menten equation--steady-state or reactant stationary assumption: that is the question.
    Schnell S
    FEBS J; 2014 Jan; 281(2):464-72. PubMed ID: 24245583
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Theoretical study of the effect of enzyme-enzyme interactions on steady-state enzyme kinetics.
    Hill TL
    Proc Natl Acad Sci U S A; 1977 Sep; 74(9):3632-6. PubMed ID: 269419
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The error in the Michaelis-Menten equation when substrate depletion by binding to the enzyme is not taken into account.
    Heirwegh KP; Vermeir M
    Biochem J; 1992 Apr; 283 ( Pt 2)(Pt 2):623-4. PubMed ID: 1575708
    [No Abstract]   [Full Text] [Related]  

  • 36. About and beyond the Henri-Michaelis-Menten rate equation for single-substrate enzyme kinetics.
    Bajzer Z; Strehler EE
    Biochem Biophys Res Commun; 2012 Jan; 417(3):982-5. PubMed ID: 22206668
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An easy procedure to transform the ratio of two polynomials of first degree into Michaelis-Menten-type equations. Application to the ordered Uni Bi enzyme mechanism.
    Fontes R; Ribeiro JM; Sillero A
    Acta Biochim Pol; 2000; 47(1):259-68. PubMed ID: 10961699
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetic analysis of enzyme inhibition by substrate depletion.
    Cortese JD; Vidal JC
    Acta Physiol Lat Am; 1981; 31(3):161-71. PubMed ID: 7187587
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Free energy linearity principle in enzymatic catalysis and thermodynamic principles of specificity].
    Kozlov LV
    Biokhimiia; 1981 Aug; 46(8):1369-75. PubMed ID: 7272358
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Kinetics of poly-enzyme system reactions. II. Nonsteady-state kinetics. Presteady-state and relation modes in a bi-enzyme system and linear sequences].
    Varfolomeev SD
    Mol Biol (Mosk); 1977; 11(4):790-800. PubMed ID: 618322
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.