BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 8241028)

  • 1. Time course changes in cytoskeletal structures of cultured endothelial cells exposed to shear stress.
    Ookawa K; Sato M; Ohshima N
    Front Med Biol Eng; 1993; 5(2):121-5. PubMed ID: 8241028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disruption of cytoskeletal structures mediates shear stress-induced endothelin-1 gene expression in cultured porcine aortic endothelial cells.
    Morita T; Kurihara H; Maemura K; Yoshizumi M; Yazaki Y
    J Clin Invest; 1993 Oct; 92(4):1706-12. PubMed ID: 8408624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fibronectin and F-actin redistribution in cultured endothelial cells exposed to shear stress.
    Wechezak AR; Viggers RF; Sauvage LR
    Lab Invest; 1985 Dec; 53(6):639-47. PubMed ID: 4068668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in the microstructure of cultured porcine aortic endothelial cells in the early stage after applying a fluid-imposed shear stress.
    Ookawa K; Sato M; Ohshima N
    J Biomech; 1992 Nov; 25(11):1321-8. PubMed ID: 1400533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monocyte adhesion and changes in endothelial cell number, morphology, and F-actin distribution elicited by low shear stress in vivo.
    Walpola PL; Gotlieb AI; Langille BL
    Am J Pathol; 1993 May; 142(5):1392-400. PubMed ID: 8494043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endothelial adherence under shear stress is dependent upon microfilament reorganization.
    Wechezak AR; Wight TN; Viggers RF; Sauvage LR
    J Cell Physiol; 1989 Apr; 139(1):136-46. PubMed ID: 2708451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shear stress induces spatial reorganization of the endothelial cell cytoskeleton.
    Galbraith CG; Skalak R; Chien S
    Cell Motil Cytoskeleton; 1998; 40(4):317-30. PubMed ID: 9712262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biorheological views of endothelial cell responses to mechanical stimuli.
    Sato M; Ohashi T
    Biorheology; 2005; 42(6):421-41. PubMed ID: 16369082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microelastic mapping of living endothelial cells exposed to shear stress in relation to three-dimensional distribution of actin filaments.
    Sato M; Suzuki K; Ueki Y; Ohashi T
    Acta Biomater; 2007 May; 3(3):311-9. PubMed ID: 17055790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Changes in the VASP expression feature of endothelial cells under steady laminar flow].
    Wei L; Liu X; Ouyang J; Li K; Muller S; Stoltz JF; Wang X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Jun; 20(2):193-6, 201. PubMed ID: 12856577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Role of Rho kinase in reorganization of the vascular endothelial cytoskeleton induced by rat burn serum].
    Zheng HZ; Zhao KS; Huang QB
    Zhonghua Shao Shang Za Zhi; 2005 Jun; 21(3):181-4. PubMed ID: 15996278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endothelial cell signaling and cytoskeletal changes in response to shear stress.
    Girard PR; Nerem RM
    Front Med Biol Eng; 1993; 5(1):31-6. PubMed ID: 8323880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential relation between cytoskeleton reorganization and e-NOS activity in sheared endothelial cells (Effect of rate and time of exposure).
    Kadi A; de Isla N; Lacolley P; Stoltz JF; Menu P
    Clin Hemorheol Microcirc; 2007; 37(1-2):131-40. PubMed ID: 17641403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of von willebrand factor of human endothelial cells exposed to laminar flows: an in vitro study.
    Sun RJ; Muller S; Wang X; Zhuang FY; Stoltz JF
    Clin Hemorheol Microcirc; 2000; 23(1):1-11. PubMed ID: 11214708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphological responses of single endothelial cells exposed to physiological levels of fluid shear stress.
    Masuda M; Fujiwara K
    Front Med Biol Eng; 1993; 5(2):79-87. PubMed ID: 8241033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patterns of living beta-actin movement in wounded human coronary artery endothelial cells exposed to shear stress.
    Albuquerque ML; Flozak AS
    Exp Cell Res; 2001 Nov; 270(2):223-34. PubMed ID: 11640886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of delta-9-tetrahydrocannabinol on actin microfilaments.
    Kiosses BW; Tahir SK; Kalnins VI; Zimmerman AM
    Cytobios; 1990; 63(252):23-9. PubMed ID: 2175259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluctuating shear stress effects on stress fiber architecture and energy metabolism of cultured renal cells.
    Bhat VD; Windridge PA; Cherry RS; Mandel LJ
    Biotechnol Prog; 1995; 11(5):596-600. PubMed ID: 8546842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shear stress regulates occludin and VEGF expression in porcine arterial endothelial cells.
    Conklin BS; Zhong DS; Zhao W; Lin PH; Chen C
    J Surg Res; 2002 Jan; 102(1):13-21. PubMed ID: 11792146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leukotrienes and tyrosine phosphorylation mediate stretching-induced actin cytoskeletal remodeling in endothelial cells.
    Wang JH; Goldschmidt-Clermont P; Moldovan N; Yin FC
    Cell Motil Cytoskeleton; 2000 Jun; 46(2):137-45. PubMed ID: 10891859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.