These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 8241176)

  • 1. Purine nucleoside phosphorylase. Catalytic mechanism and transition-state analysis of the arsenolysis reaction.
    Kline PC; Schramm VL
    Biochemistry; 1993 Dec; 32(48):13212-9. PubMed ID: 8241176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pre-steady-state transition-state analysis of the hydrolytic reaction catalyzed by purine nucleoside phosphorylase.
    Kline PC; Schramm VL
    Biochemistry; 1995 Jan; 34(4):1153-62. PubMed ID: 7827065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purine nucleoside phosphorylase. Inosine hydrolysis, tight binding of the hypoxanthine intermediate, and third-the-sites reactivity.
    Kline PC; Schramm VL
    Biochemistry; 1992 Jul; 31(26):5964-73. PubMed ID: 1627539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arsenate and phosphate as nucleophiles at the transition states of human purine nucleoside phosphorylase.
    Silva RG; Hirschi JS; Ghanem M; Murkin AS; Schramm VL
    Biochemistry; 2011 Apr; 50(13):2701-9. PubMed ID: 21348499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calf spleen purine nucleoside phosphorylase: complex kinetic mechanism, hydrolysis of 7-methylguanosine, and oligomeric state in solution.
    Bzowska A
    Biochim Biophys Acta; 2002 Apr; 1596(2):293-317. PubMed ID: 12007610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of Cytokinins via Enzymatic Arsenolysis of Purine Nucleosides.
    Oslovsky VE; Drenichev MS; Alexeev CS; Solyev PN; Esipov RS; Mikhailov SN
    Curr Protoc Nucleic Acid Chem; 2018 Dec; 75(1):e61. PubMed ID: 30299587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calf spleen purine nucleoside phosphorylase complexed with substrates and substrate analogues.
    Mao C; Cook WJ; Zhou M; Federov AA; Almo SC; Ealick SE
    Biochemistry; 1998 May; 37(20):7135-46. PubMed ID: 9585525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of thiol-supported arsenate reduction mediated by phosphorolytic-arsenolytic enzymes: II. Enzymatic formation of arsenylated products susceptible for reduction to arsenite by thiols.
    Gregus Z; Roos G; Geerlings P; Németi B
    Toxicol Sci; 2009 Aug; 110(2):282-92. PubMed ID: 19478237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purine nucleoside phosphorylase. Kinetic mechanism of the enzyme from calf spleen.
    Porter DJ
    J Biol Chem; 1992 Apr; 267(11):7342-51. PubMed ID: 1559977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Xanthosine and xanthine. Substrate properties with purine nucleoside phosphorylases, and relevance to other enzyme systems.
    Stoychev G; Kierdaszuk B; Shugar D
    Eur J Biochem; 2002 Aug; 269(16):4048-57. PubMed ID: 12180982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic alpha-deuterium isotope effects for Escherichia coli purine nucleoside phosphorylase-catalyzed phosphorolysis of adenosine and inosine.
    Stein RL; Cordes EH
    J Biol Chem; 1981 Jan; 256(2):767-72. PubMed ID: 6778874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transition state analysis for human and Plasmodium falciparum purine nucleoside phosphorylases.
    Lewandowicz A; Schramm VL
    Biochemistry; 2004 Feb; 43(6):1458-68. PubMed ID: 14769022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purine nucleoside phosphorylase as a cytosolic arsenate reductase.
    Gregus Z; Németi B
    Toxicol Sci; 2002 Nov; 70(1):13-9. PubMed ID: 12388830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition-state analysis of nucleoside hydrolase from Crithidia fasciculata.
    Horenstein BA; Parkin DW; Estupiñán B; Schramm VL
    Biochemistry; 1991 Nov; 30(44):10788-95. PubMed ID: 1931998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of thiol-supported arsenate reduction mediated by phosphorolytic-arsenolytic enzymes: I. The role of arsenolysis.
    Németi B; Gregus Z
    Toxicol Sci; 2009 Aug; 110(2):270-81. PubMed ID: 19474219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic properties of Cellulomonas sp. purine nucleoside phosphorylase with typical and non-typical substrates: implications for the reaction mechanism.
    Wielgus-Kutrowska B; Bzowska A
    Nucleosides Nucleotides Nucleic Acids; 2005; 24(5-7):471-6. PubMed ID: 16247973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computer Simulations Reveal Substrate Specificity of Glycosidic Bond Cleavage in Native and Mutant Human Purine Nucleoside Phosphorylase.
    Isaksen GV; Hopmann KH; Åqvist J; Brandsdal BO
    Biochemistry; 2016 Apr; 55(14):2153-62. PubMed ID: 26985580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transition state structure of purine nucleoside phosphorylase and principles of atomic motion in enzymatic catalysis.
    Fedorov A; Shi W; Kicska G; Fedorov E; Tyler PC; Furneaux RH; Hanson JC; Gainsford GJ; Larese JZ; Schramm VL; Almo SC
    Biochemistry; 2001 Jan; 40(4):853-60. PubMed ID: 11170405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of alpha-deuterium kinetic isotope effects on the purine nucleoside phosphorylase reaction by the equilibrium-perturbation technique.
    Lehikoinen PK; Sinnott ML; Krenitsky TA
    Biochem J; 1989 Jan; 257(2):355-9. PubMed ID: 2494984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties of two unusual, and fluorescent, substrates of purine-nucleoside phosphorylase: 7-methylguanosine and 7-methylinosine.
    Kulikowska E; Bzowska A; Wierzchowski J; Shugar D
    Biochim Biophys Acta; 1986 Dec; 874(3):355-63. PubMed ID: 3098294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.