These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 8241251)

  • 1. Quantitative analysis of proton movements associated with the uptake of weak carboxylic acids. The yeast Candida utilis as a model.
    Cássio F; Côrte-Real M; Leão C
    Biochim Biophys Acta; 1993 Nov; 1153(1):59-66. PubMed ID: 8241251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative study on the transport of L(-)malic acid and other short-chain carboxylic acids in the yeast Candida utilis: evidence for a general organic acid permease.
    Cássio F; Leão C
    Yeast; 1993 Jul; 9(7):743-52. PubMed ID: 8368008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstitution of lactate proton symport activity in plasma membrane vesicles from the yeast Candida utilis.
    Gerós H; Cássio F; Leão C
    Yeast; 1996 Sep; 12(12):1263-72. PubMed ID: 8905930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The putative electrogenic nitrate-proton symport of the yeast Candida utilis. Comparison with the systems absorbing glucose or lactate.
    Eddy AA; Hopkins PG
    Biochem J; 1985 Oct; 231(2):291-7. PubMed ID: 2998345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilization of short-chain monocarboxylic acids by the yeast Torulaspora delbrueckii: specificity of the transport systems and their regulation.
    Casal M; Leão C
    Biochim Biophys Acta; 1995 Jun; 1267(2-3):122-30. PubMed ID: 7612664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carrier-mediated blood-brain barrier transport of short-chain monocarboxylic organic acids.
    Oldendorf WH
    Am J Physiol; 1973 Jun; 224(6):1450-3. PubMed ID: 4712154
    [No Abstract]   [Full Text] [Related]  

  • 7. Low- and high-affinity transport systems for citric acid in the yeast Candida utilis.
    Cássio F; Leáo C
    Appl Environ Microbiol; 1991 Dec; 57(12):3623-8. PubMed ID: 1664712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling of electron transfer to proton uptake at the Q(B) site of the bacterial reaction center: a perspective from FTIR difference spectroscopy.
    Nabedryk E; Breton J
    Biochim Biophys Acta; 2008 Oct; 1777(10):1229-48. PubMed ID: 18671937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Occurrence and taxonomic aspects of proton movements coupled to sugar transport in the yeast genus Kluyveromyces.
    Kilian SG; van Deemter A; Kock JL; du Preez JC
    Antonie Van Leeuwenhoek; 1991 Apr; 59(3):199-206. PubMed ID: 1651070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proton and charge circulation through substrate symports in Saccharomyces cerevisiae: non-classical behaviour of the cytosine symport.
    Eddy AA; Hopkins P; Shaw R
    Symp Soc Exp Biol; 1994; 48():123-39. PubMed ID: 7597638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of pH-dependent elements in proteins: geometry and properties of pairs of hydrogen-bonded carboxylic acid side-chains.
    Wohlfahrt G
    Proteins; 2005 Feb; 58(2):396-406. PubMed ID: 15558575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The occurrence of non-volatile organic acids in cultures of Trichophyton mentagrophytes (Robin) Blanchard. 9. Chemical and physiological--chemical studies on dermatophytes, also 31. Chemistry and physiology of metabolic chemically important acids].
    Wollmann H
    Pharmazie; 1978 Jan; 33(1):74-8. PubMed ID: 674281
    [No Abstract]   [Full Text] [Related]  

  • 13. Thermodynamic bookkeeping: a reinvestigation of proton and dicarboxylic acid binding to aspartate aminotransferase.
    Jenkins WT
    Biochimie; 1989 Apr; 71(4):405-10. PubMed ID: 2547452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proton stoichiometry of the overexpressed uracil symport of the yeast Saccharomyces cerevisiae.
    Eddy AA; Hopkins P
    Biochem J; 1998 Nov; 336 ( Pt 1)(Pt 1):125-30. PubMed ID: 9806893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional purification of the monocarboxylate transporter of the yeast Candida utilis.
    Baltazar F; Cássio F; Leão C
    Biotechnol Lett; 2006 Aug; 28(16):1221-6. PubMed ID: 16802097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proton movements coupled to lactate and alanine transport in Escherichia coli: isolation of mutants with altered stoichiometry in alanine transport.
    Collins SH; Jarvis AW; Lindsay RJ; Hamilton WA
    J Bacteriol; 1976 Jun; 126(3):1232-44. PubMed ID: 7547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Biochemistry and genetics of organic acid transport in bacteria].
    Gershanovich VN
    Usp Sovrem Biol; 1975; 79(1):21-32. PubMed ID: 804772
    [No Abstract]   [Full Text] [Related]  

  • 18. Effect of monomer composition on proton dissociation of weak polyacids.
    Paoletti S; Gilli R; Navarini L; Crescenzi V
    Glycoconj J; 1997 Jun; 14(4):513-7. PubMed ID: 9249152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Anion translocation in mitochondria. II. Transport of dicarboxylic and tricarboxylic acids].
    Zanotti F; Lofrumento NE
    Boll Soc Ital Biol Sper; 1976 Sep; 52(17):1331-6. PubMed ID: 1024537
    [No Abstract]   [Full Text] [Related]  

  • 20. Ion-exchange chromatography of carboxylic acids.
    Jandera P; Churácek J
    J Chromatogr; 1973 Nov; 86(2):351-421. PubMed ID: 4587844
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.