BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 8241251)

  • 1. Quantitative analysis of proton movements associated with the uptake of weak carboxylic acids. The yeast Candida utilis as a model.
    Cássio F; Côrte-Real M; Leão C
    Biochim Biophys Acta; 1993 Nov; 1153(1):59-66. PubMed ID: 8241251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative study on the transport of L(-)malic acid and other short-chain carboxylic acids in the yeast Candida utilis: evidence for a general organic acid permease.
    Cássio F; Leão C
    Yeast; 1993 Jul; 9(7):743-52. PubMed ID: 8368008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstitution of lactate proton symport activity in plasma membrane vesicles from the yeast Candida utilis.
    Gerós H; Cássio F; Leão C
    Yeast; 1996 Sep; 12(12):1263-72. PubMed ID: 8905930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The putative electrogenic nitrate-proton symport of the yeast Candida utilis. Comparison with the systems absorbing glucose or lactate.
    Eddy AA; Hopkins PG
    Biochem J; 1985 Oct; 231(2):291-7. PubMed ID: 2998345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilization of short-chain monocarboxylic acids by the yeast Torulaspora delbrueckii: specificity of the transport systems and their regulation.
    Casal M; Leão C
    Biochim Biophys Acta; 1995 Jun; 1267(2-3):122-30. PubMed ID: 7612664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carrier-mediated blood-brain barrier transport of short-chain monocarboxylic organic acids.
    Oldendorf WH
    Am J Physiol; 1973 Jun; 224(6):1450-3. PubMed ID: 4712154
    [No Abstract]   [Full Text] [Related]  

  • 7. Low- and high-affinity transport systems for citric acid in the yeast Candida utilis.
    Cássio F; Leáo C
    Appl Environ Microbiol; 1991 Dec; 57(12):3623-8. PubMed ID: 1664712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling of electron transfer to proton uptake at the Q(B) site of the bacterial reaction center: a perspective from FTIR difference spectroscopy.
    Nabedryk E; Breton J
    Biochim Biophys Acta; 2008 Oct; 1777(10):1229-48. PubMed ID: 18671937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Occurrence and taxonomic aspects of proton movements coupled to sugar transport in the yeast genus Kluyveromyces.
    Kilian SG; van Deemter A; Kock JL; du Preez JC
    Antonie Van Leeuwenhoek; 1991 Apr; 59(3):199-206. PubMed ID: 1651070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proton and charge circulation through substrate symports in Saccharomyces cerevisiae: non-classical behaviour of the cytosine symport.
    Eddy AA; Hopkins P; Shaw R
    Symp Soc Exp Biol; 1994; 48():123-39. PubMed ID: 7597638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of pH-dependent elements in proteins: geometry and properties of pairs of hydrogen-bonded carboxylic acid side-chains.
    Wohlfahrt G
    Proteins; 2005 Feb; 58(2):396-406. PubMed ID: 15558575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The occurrence of non-volatile organic acids in cultures of Trichophyton mentagrophytes (Robin) Blanchard. 9. Chemical and physiological--chemical studies on dermatophytes, also 31. Chemistry and physiology of metabolic chemically important acids].
    Wollmann H
    Pharmazie; 1978 Jan; 33(1):74-8. PubMed ID: 674281
    [No Abstract]   [Full Text] [Related]  

  • 13. Thermodynamic bookkeeping: a reinvestigation of proton and dicarboxylic acid binding to aspartate aminotransferase.
    Jenkins WT
    Biochimie; 1989 Apr; 71(4):405-10. PubMed ID: 2547452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proton stoichiometry of the overexpressed uracil symport of the yeast Saccharomyces cerevisiae.
    Eddy AA; Hopkins P
    Biochem J; 1998 Nov; 336 ( Pt 1)(Pt 1):125-30. PubMed ID: 9806893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional purification of the monocarboxylate transporter of the yeast Candida utilis.
    Baltazar F; Cássio F; Leão C
    Biotechnol Lett; 2006 Aug; 28(16):1221-6. PubMed ID: 16802097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proton movements coupled to lactate and alanine transport in Escherichia coli: isolation of mutants with altered stoichiometry in alanine transport.
    Collins SH; Jarvis AW; Lindsay RJ; Hamilton WA
    J Bacteriol; 1976 Jun; 126(3):1232-44. PubMed ID: 7547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Biochemistry and genetics of organic acid transport in bacteria].
    Gershanovich VN
    Usp Sovrem Biol; 1975; 79(1):21-32. PubMed ID: 804772
    [No Abstract]   [Full Text] [Related]  

  • 18. Effect of monomer composition on proton dissociation of weak polyacids.
    Paoletti S; Gilli R; Navarini L; Crescenzi V
    Glycoconj J; 1997 Jun; 14(4):513-7. PubMed ID: 9249152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Anion translocation in mitochondria. II. Transport of dicarboxylic and tricarboxylic acids].
    Zanotti F; Lofrumento NE
    Boll Soc Ital Biol Sper; 1976 Sep; 52(17):1331-6. PubMed ID: 1024537
    [No Abstract]   [Full Text] [Related]  

  • 20. Ion-exchange chromatography of carboxylic acids.
    Jandera P; Churácek J
    J Chromatogr; 1973 Nov; 86(2):351-421. PubMed ID: 4587844
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.