These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 8241253)

  • 1. Frequency domain electrical conductivity measurements of the passive electrical properties of human lymphocytes.
    Bordi F; Cametti C; Rosi A; Calcabrini A
    Biochim Biophys Acta; 1993 Nov; 1153(1):77-88. PubMed ID: 8241253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of cell membrane passive electrical properties using frequency domain dielectric spectroscopy technique. A new approach.
    Bordi F; Cametti C; Di Biasio A
    Biochim Biophys Acta; 1990 Oct; 1028(2):201-4. PubMed ID: 2223792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alteration of the passive electrical properties of lymphocyte membranes induced by GM1 and GM3 glycolipids.
    Cametti C; De Luca F; D'Ilario A; Macrì MA; Maraviglia B; Bordi F; Lenti L; Misasi R; Sorice M
    Biochim Biophys Acta; 1992 Nov; 1111(2):197-203. PubMed ID: 1420255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time domain dielectric spectroscopy study of human cells. II. Normal and malignant white blood cells.
    Polevaya Y; Ermolina I; Schlesinger M; Ginzburg BZ; Feldman Y
    Biochim Biophys Acta; 1999 Jul; 1419(2):257-71. PubMed ID: 10407076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative assessment of dielectric parameters for membrane lipid bi-layers from RF permittivity measurements.
    Merla C; Liberti M; Apollonio F; d'Inzeo G
    Bioelectromagnetics; 2009 May; 30(4):286-98. PubMed ID: 19191229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dielectric properties of yeast cells as simulated by the two-shell model.
    Raicu V; Raicu G; Turcu G
    Biochim Biophys Acta; 1996 Jun; 1274(3):143-8. PubMed ID: 8664306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dielectric analysis of Escherichia coli suspensions in the light of the theory of interfacial polarization.
    Asami K; Hanai T; Koizumi N
    Biophys J; 1980 Aug; 31(2):215-28. PubMed ID: 7020783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical conductivity of differently treated isolated cuticular membranes by impedance spectroscopy.
    Ramos-Barrado J; Benavente J; Heredia A
    Arch Biochem Biophys; 1993 Nov; 306(2):337-41. PubMed ID: 8215433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dielectric properties of murine lymphocytes.
    Jaroszyński W; Terlecki J; Myśliwski A; Myśliwska J; Witkowski J
    Folia Histochem Cytochem (Krakow); 1983; 21(3-4):161-72. PubMed ID: 6667908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the dielectric relaxation of biological cell suspensions: the effect of the membrane electrical conductivity.
    Di Biasio A; Cametti C
    Colloids Surf B Biointerfaces; 2011 Jun; 84(2):433-41. PubMed ID: 21334862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Passive electrical properties of the membrane and cytoplasm of cultured rat basophil leukemia cells. I. Dielectric behavior of cell suspensions in 0.01-500 MHz and its simulation with a single-shell model.
    Irimajiri A; Asami K; Ichinowatari T; Kinoshita Y
    Biochim Biophys Acta; 1987 Jan; 896(2):203-13. PubMed ID: 3801468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The admittance of the squid giant axon at radio frequencies and its relation to membrane structure.
    Haydon DA; Urban BW
    J Physiol; 1985 Mar; 360():275-91. PubMed ID: 3989718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alterations in the electrical properties of T and B lymphocyte membranes induced by mitogenic stimulation. Activation monitored by electro-rotation of single cells.
    Hu X; Arnold WM; Zimmermann U
    Biochim Biophys Acta; 1990 Jan; 1021(2):191-200. PubMed ID: 2302395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective conductivity and permittivity of unsaturated porous materials in the frequency range 1 mHz-1GHz.
    Revil A
    Water Resour Res; 2013 Jan; 49(1):306-327. PubMed ID: 23576823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dielectric spectroscopy of human blood.
    Beving H; Eriksson G
    Eur J Surg Suppl; 1994; (574):87-9. PubMed ID: 7531031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiofrequency interaction with conductive colloids: permittivity and electrical conductivity of single-wall carbon nanotubes in saline.
    Gach HM; Nair T
    Bioelectromagnetics; 2010 Dec; 31(8):582-8. PubMed ID: 20607730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maxwell-Wagner polarization and frequency-dependent injection at aqueous electrical interfaces.
    Desmond M; Mavrogiannis N; Gagnon Z
    Phys Rev Lett; 2012 Nov; 109(18):187602. PubMed ID: 23215330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Passive electrical properties of cultured murine lymphoblast (L5178Y) with reference to its cytoplasmic membrane, nuclear envelope, and intracellular phases.
    Irimajiri A; Doida Y; Hanai T; Inouye A
    J Membr Biol; 1978 Jan; 38(3):209-32. PubMed ID: 625050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Apparatus for the electrical characterisation of conductive fluids.
    Blake-Coleman BC; Ulrich A; Fitzpatrick PF; Calder MR; Clarke DJ
    Biosensors; 1989; 4(2):87-108. PubMed ID: 2497748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency domain studies of impedance characteristics of biological cells using micropipet technique. I. Erythrocyte.
    Takashima S; Asami K; Takahashi Y
    Biophys J; 1988 Dec; 54(6):995-1000. PubMed ID: 3233276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.