BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 8241397)

  • 1. Critical temperature for unilamellar vesicle formation in dimyristoylphosphatidylcholine dispersions from specific heat measurements.
    Gershfeld NL; Mudd CP; Tajima K; Berger RL
    Biophys J; 1993 Sep; 65(3):1174-9. PubMed ID: 8241397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and thermotropic properties of 1-stearoyl-2-acetyl-phosphatidylcholine bilayer membranes.
    Shah J; Duclos RI; Shipley GG
    Biophys J; 1994 May; 66(5):1469-78. PubMed ID: 8061196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the critical unilamellar state of membranes.
    Gershfeld NL; Ginsberg L
    J Membr Biol; 1997 Apr; 156(3):279-86. PubMed ID: 9096068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of fully hydrated fluid phase DMPC and DLPC lipid bilayers using X-ray scattering from oriented multilamellar arrays and from unilamellar vesicles.
    Kucerka N; Liu Y; Chu N; Petrache HI; Tristram-Nagle S; Nagle JF
    Biophys J; 2005 Apr; 88(4):2626-37. PubMed ID: 15665131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissipation-enhanced quartz crystal microbalance studies on the experimental parameters controlling the formation of supported lipid bilayers.
    Seantier B; Breffa C; Félix O; Decher G
    J Phys Chem B; 2005 Nov; 109(46):21755-65. PubMed ID: 16853826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of lamellarity and size on calorimetric phase transitions in single component phosphatidylcholine vesicles.
    Drazenovic J; Wang H; Roth K; Zhang J; Ahmed S; Chen Y; Bothun G; Wunder SL
    Biochim Biophys Acta; 2015 Feb; 1848(2):532-43. PubMed ID: 25445167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploration of physical principles underlying lipid regular distribution: effects of pressure, temperature, and radius of curvature on E/M dips in pyrene-labeled PC/DMPC binary mixtures.
    Chong PL; Tang D; Sugar IP
    Biophys J; 1994 Jun; 66(6):2029-38. PubMed ID: 8075336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phospholipid surface bilayers at the air-water interface. I. Thermodynamic properties.
    Tajima K; Gershfeld NL
    Biophys J; 1985 Feb; 47(2 Pt 1):203-9. PubMed ID: 3838485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal transitions in dimyristoylphosphatidylcholine foam bilayers.
    Nikolova A; Exerowa D; Lalchev Z; Tsonev L
    Eur Biophys J; 1994; 23(2):145-52. PubMed ID: 8050399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformation and dynamics of melittin bound to magnetically oriented lipid bilayers by solid-state (31)P and (13)C NMR spectroscopy.
    Naito A; Nagao T; Norisada K; Mizuno T; Tuzi S; Saitô H
    Biophys J; 2000 May; 78(5):2405-17. PubMed ID: 10777736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solid state 13C NMR of unlabeled phosphatidylcholine bilayers: spectral assignments and measurement of carbon-phosphorus dipolar couplings and 13C chemical shift anisotropies.
    Sanders CR
    Biophys J; 1993 Jan; 64(1):171-81. PubMed ID: 8431541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative study of an adenosine triphosphatase trigger-fused lipid vesicle and other vesicle forms of dimyristoylphosphatidylcholine.
    Dufour JP; Nunnally R; Buhle L; Tsong TY
    Biochemistry; 1981 Sep; 20(19):5576-86. PubMed ID: 6457634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phospholipid surface bilayers at the air-water interface. II. Water permeability of dimyristoylphosphatidylcholine surface bilayers.
    Ginsberg L; Gershfeld NL
    Biophys J; 1985 Feb; 47(2 Pt 1):211-5. PubMed ID: 3978199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical swelling in single phospholipid bilayers.
    Mason PC; Gaulin BD; Epand RM; Katsaras J
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 May; 61(5 Pt B):5634-9. PubMed ID: 11031619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth kinetics of lipid-based nanodiscs to unilamellar vesicles-a time-resolved small angle neutron scattering (SANS) study.
    Mahabir S; Small D; Li M; Wan W; Kučerka N; Littrell K; Katsaras J; Nieh MP
    Biochim Biophys Acta; 2013 Mar; 1828(3):1025-35. PubMed ID: 23196346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lateral diffusion of cholesterol and dimyristoylphosphatidylcholine in a lipid bilayer measured by pulsed field gradient NMR spectroscopy.
    Orädd G; Lindblom G; Westerman PW
    Biophys J; 2002 Nov; 83(5):2702-4. PubMed ID: 12414702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of cholesterol and temperature on the permeability of dimyristoylphosphatidylcholine bilayers near the chain melting phase transition.
    Kraske WV; Mountcastle DB
    Biochim Biophys Acta; 2001 Oct; 1514(2):159-64. PubMed ID: 11557016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observation of the main phase transition of dinervonoylphosphocholine giant liposomes by fluorescence microscopy.
    Metso AJ; Zhao H; Tuunainen I; Kinnunen PK
    Biochim Biophys Acta; 2005 Jul; 1713(2):83-91. PubMed ID: 15979562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of the barotropic ripple (P beta')/lamellar liquid crystal (L alpha) phase transition in fully hydrated dimyristoylphosphatidylcholine (DMPC) monitored by time-resolved x-ray diffraction.
    Caffrey M; Hogan J; Mencke A
    Biophys J; 1991 Aug; 60(2):456-66. PubMed ID: 1912281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calorimetric and spectroscopic studies of the phase behavior and organization of lipid bilayer model membranes composed of binary mixtures of dimyristoylphosphatidylcholine and dimyristoylphosphatidylglycerol.
    Lewis RN; Zhang YP; McElhaney RN
    Biochim Biophys Acta; 2005 Mar; 1668(2):203-14. PubMed ID: 15737331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.