These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 8241411)
1. Interaction forces between red cells agglutinated by antibody. IV. Time and force dependence of break-up. Tees DF; Coenen O; Goldsmith HL Biophys J; 1993 Sep; 65(3):1318-34. PubMed ID: 8241411 [TBL] [Abstract][Full Text] [Related]
2. Kinetics and locus of failure of receptor-ligand-mediated adhesion between latex spheres. I. Protein-carbohydrate bond. Tees DF; Goldsmith HL Biophys J; 1996 Aug; 71(2):1102-14. PubMed ID: 8842247 [TBL] [Abstract][Full Text] [Related]
3. Interaction forces between red cells agglutinated by antibody. III. Micromanipulation. Tha SP; Goldsmith HL Biophys J; 1988 May; 53(5):677-87. PubMed ID: 3134058 [TBL] [Abstract][Full Text] [Related]
4. Interaction forces between red cells agglutinated by antibody. II. Measurement of hydrodynamic force of breakup. Tha SP; Shuster J; Goldsmith HL Biophys J; 1986 Dec; 50(6):1117-26. PubMed ID: 3801572 [TBL] [Abstract][Full Text] [Related]
5. Time and force dependence of the rupture of glycoprotein IIb-IIIa-fibrinogen bonds between latex spheres. Goldsmith HL; McIntosh FA; Shahin J; Frojmovic MM Biophys J; 2000 Mar; 78(3):1195-206. PubMed ID: 10692309 [TBL] [Abstract][Full Text] [Related]
6. Kinetics and locus of failure of receptor-ligand-mediated adhesion between latex spheres. II. Protein-protein bond. Kwong D; Tees DF; Goldsmith HL Biophys J; 1996 Aug; 71(2):1115-22. PubMed ID: 8842248 [TBL] [Abstract][Full Text] [Related]
7. Interaction forces between red cells agglutinated by antibody. I. Theoretical. Tha SP; Goldsmith HL Biophys J; 1986 Dec; 50(6):1109-16. PubMed ID: 3801571 [TBL] [Abstract][Full Text] [Related]
8. Dynamics of neutrophil aggregation in couette flow revealed by videomicroscopy: effect of shear rate on two-body collision efficiency and doublet lifetime. Goldsmith HL; Quinn TA; Drury G; Spanos C; McIntosh FA; Simon SI Biophys J; 2001 Oct; 81(4):2020-34. PubMed ID: 11566775 [TBL] [Abstract][Full Text] [Related]
9. Kinetics of specific and nonspecific adhesion of red blood cells on glass. Xia Z; Goldsmith HL; van de Ven TG Biophys J; 1993 Sep; 65(3):1073-83. PubMed ID: 8241388 [TBL] [Abstract][Full Text] [Related]
10. Probabilistic modeling of shear-induced formation and breakage of doublets cross-linked by receptor-ligand bonds. Long M; Goldsmith HL; Tees DF; Zhu C Biophys J; 1999 Feb; 76(2):1112-28. PubMed ID: 9916043 [TBL] [Abstract][Full Text] [Related]
11. Flow-induced detachment of red blood cells adhering to surfaces by specific antigen-antibody bonds. Xia Z; Goldsmith HL; van de Ven TG Biophys J; 1994 Apr; 66(4):1222-30. PubMed ID: 8038393 [TBL] [Abstract][Full Text] [Related]
12. A particle dynamic model of red blood cell aggregation kinetics. Fenech M; Garcia D; Meiselman HJ; Cloutier G Ann Biomed Eng; 2009 Nov; 37(11):2299-309. PubMed ID: 19669883 [TBL] [Abstract][Full Text] [Related]
13. Detachment of agglutinin-bonded red blood cells. II. Mechanical energies to separate large contact areas. Evans E; Berk D; Leung A; Mohandas N Biophys J; 1991 Apr; 59(4):849-60. PubMed ID: 2065189 [TBL] [Abstract][Full Text] [Related]
14. Characterization of monoclonal antibodies against human red blood group cells antigens by laser backscattering. Rasia RJ; de Isla N; Altube L; Muller S; Valverde J; Stoltz JF Biorheology; 2003; 40(1-3):197-203. PubMed ID: 12454405 [TBL] [Abstract][Full Text] [Related]
15. Physical and chemical effects of red cells in the shear-induced aggregation of human platelets. Goldsmith HL; Bell DN; Braovac S; Steinberg A; McIntosh F Biophys J; 1995 Oct; 69(4):1584-95. PubMed ID: 8534829 [TBL] [Abstract][Full Text] [Related]
16. Detachment of agglutinin-bonded red blood cells. III. Mechanical analysis for large contact areas. Berk D; Evans E Biophys J; 1991 Apr; 59(4):861-72. PubMed ID: 2065190 [TBL] [Abstract][Full Text] [Related]
17. Cell disaggregation behavior in shear flow. Snabre P; Bitbol M; Mills P Biophys J; 1987 May; 51(5):795-807. PubMed ID: 2439136 [TBL] [Abstract][Full Text] [Related]
18. Red blood cell orientation in orbit C = 0. Bitbol M Biophys J; 1986 May; 49(5):1055-68. PubMed ID: 3708090 [TBL] [Abstract][Full Text] [Related]
19. Adenosine diphosphate-induced aggregation of human platelets in flow through tubes. II. Effect of shear rate, donor sex, and ADP concentration. Bell DN; Spain S; Goldsmith HL Biophys J; 1989 Nov; 56(5):829-43. PubMed ID: 2605299 [TBL] [Abstract][Full Text] [Related]
20. A fluid-particle interaction method for blood flow with special emphasis on red blood cell aggregation. Wang T; Xing Z Biomed Mater Eng; 2014; 24(6):2511-7. PubMed ID: 25226952 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]