These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 8241621)

  • 1. Cadmium, lead, and zinc from terrestial plants in the Enyigba-Abakaliki lead and zinc mine: search for a monitoring plant species in trace element distribution.
    Chukwuma C
    Bull Environ Contam Toxicol; 1993 Nov; 51(5):665-71. PubMed ID: 8241621
    [No Abstract]   [Full Text] [Related]  

  • 2. A comparative study of cadmium, lead, zinc, pH, and bulk density from the Enyigba lead and zinc mine in two different seasons.
    Chukwuma C
    Ecotoxicol Environ Saf; 1995 Aug; 31(3):246-9. PubMed ID: 7498063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal accumulation in wild plants surrounding mining wastes.
    González RC; González-Chávez MC
    Environ Pollut; 2006 Nov; 144(1):84-92. PubMed ID: 16631286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use and abuse of trace metal concentrations in plant tissue for biomonitoring and phytoextraction.
    Mertens J; Luyssaert S; Verheyen K
    Environ Pollut; 2005 Nov; 138(1):1-4. PubMed ID: 16023913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of phytoremediation capability of selected plant species for given trace elements.
    Fischerová Z; Tlustos P; Jirina Száková ; Kornelie Sichorová
    Environ Pollut; 2006 Nov; 144(1):93-100. PubMed ID: 16516363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution and accumulation of metals in soils and plant from a lead-zinc mineland in Guangxi, South China.
    Wang Y; Zhan M; Zhu H; Guo S; Wang W; Xue B
    Bull Environ Contam Toxicol; 2012 Feb; 88(2):198-203. PubMed ID: 22105935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China.
    Deng H; Ye ZH; Wong MH
    Environ Pollut; 2004 Nov; 132(1):29-40. PubMed ID: 15276271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability.
    Chehregani A; Noori M; Yazdi HL
    Ecotoxicol Environ Saf; 2009 Jul; 72(5):1349-53. PubMed ID: 19386362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. White poplar (Populus alba) as a biomonitor of trace elements in contaminated riparian forests.
    Madejón P; Marañón T; Murillo JM; Robinson B
    Environ Pollut; 2004 Nov; 132(1):145-55. PubMed ID: 15276282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zinc, cadmium and lead accumulation and characteristics of rhizosphere microbial population associated with hyperaccumulator Sedum alfredii Hance under natural conditions.
    Long XX; Zhang YG; Jun D; Zhou Q
    Bull Environ Contam Toxicol; 2009 Apr; 82(4):460-7. PubMed ID: 19183820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China.
    Yanqun Z; Yuan L; Jianjun C; Haiyan C; Li Q; Schvartz C
    Environ Int; 2005 Jul; 31(5):755-62. PubMed ID: 15910971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct and indirect effects of metal contamination on soil biota in a Zn-Pb post-mining and smelting area (S Poland).
    Kapusta P; Szarek-Łukaszewska G; Stefanowicz AM
    Environ Pollut; 2011 Jun; 159(6):1516-22. PubMed ID: 21477907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plant community tolerant to trace elements growing on the degraded soils of São Domingos mine in the south east of Portugal: environmental implications.
    Freitas H; Prasad MN; Pratas J
    Environ Int; 2004 Mar; 30(1):65-72. PubMed ID: 14664866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uptake of metals and metalloids by plants growing in a lead-zinc mine area, Northern Vietnam.
    Nguyen TH; Sakakibara M; Sano S; Mai TN
    J Hazard Mater; 2011 Feb; 186(2-3):1384-91. PubMed ID: 21227580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Allocation and source attribution of lead and cadmium in maize (Zea mays L.) impacted by smelting emissions.
    Bi X; Feng X; Yang Y; Li X; Shin GP; Li F; Qiu G; Li G; Liu T; Fu Z
    Environ Pollut; 2009 Mar; 157(3):834-9. PubMed ID: 19100668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Environmental contamination and the lead, cadmium, zinc and copper content of wheat plants].
    Annicchiarico Sebastiani L; Brunetti A; Caponigro P; Grella A; Mattei F; Melchiorri C
    Nuovi Ann Ig Microbiol; 1977; 28(2):67-89. PubMed ID: 80793
    [No Abstract]   [Full Text] [Related]  

  • 17. Distribution of copper, lead, cadmium and zinc concentrations in soils around Kabwe town in Zambia.
    Tembo BD; Sichilongo K; Cernak J
    Chemosphere; 2006 Apr; 63(3):497-501. PubMed ID: 16337989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A test of sequential extractions for determining metal speciation in sewage sludge-amended soils.
    Kim B; McBride MB
    Environ Pollut; 2006 Nov; 144(2):475-82. PubMed ID: 16603292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heavy metal concentrations in soils and plant accumulation in a restored manganese mineland in Guangxi, South China.
    Li MS; Luo YP; Su ZY
    Environ Pollut; 2007 May; 147(1):168-75. PubMed ID: 17014941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accumulation of metals in fish from lead-zinc mining areas of southeastern Missouri, USA.
    Schmitt CJ; Brumbaugh WG; May TW
    Ecotoxicol Environ Saf; 2007 May; 67(1):14-30. PubMed ID: 17306371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.