These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
49 related articles for article (PubMed ID: 8242069)
1. Correct usage of a mutated G+1 splice site and transcript quantitation in a lipoprotein lipase-deficient patient. Pepe G; Chimienti G Hum Mol Genet; 1993 Sep; 2(9):1455-9. PubMed ID: 8242069 [TBL] [Abstract][Full Text] [Related]
2. Occurrence of multiple aberrantly spliced mRNAs upon a donor splice site mutation that causes familial lipoprotein lipase deficiency. Gotoda T; Yamada N; Murase T; Inaba T; Ishibashi S; Shimano H; Koga S; Yazaki Y; Furuichi Y; Takaku F J Biol Chem; 1991 Dec; 266(36):24757-62. PubMed ID: 1761570 [TBL] [Abstract][Full Text] [Related]
3. A G----C change at the donor splice site of intron 1 causes lipoprotein lipase deficiency in a southern-Italian family. Chimienti G; Capurso A; Resta F; Pepe G Biochem Biophys Res Commun; 1992 Sep; 187(2):620-7. PubMed ID: 1530621 [TBL] [Abstract][Full Text] [Related]
4. Defective RNA splicing resulting from a mutation in the cyclic guanosine monophosphate-phosphodiesterase beta-subunit gene. Piriev NI; Shih JM; Farber DB Invest Ophthalmol Vis Sci; 1998 Mar; 39(3):463-70. PubMed ID: 9501854 [TBL] [Abstract][Full Text] [Related]
5. A novel frameshift mutation in the lipoprotein lipase gene is rescued by alternative messenger RNA splicing. Laurie AD; Kyle CV J Clin Lipidol; 2017; 11(2):357-361. PubMed ID: 28502491 [TBL] [Abstract][Full Text] [Related]
6. Genetic and biochemical evidence that CESD and Wolman disease are distinguished by residual lysosomal acid lipase activity. Aslanidis C; Ries S; Fehringer P; Büchler C; Klima H; Schmitz G Genomics; 1996 Apr; 33(1):85-93. PubMed ID: 8617513 [TBL] [Abstract][Full Text] [Related]
7. Use of modified U1 small nuclear RNA for rescue from exon 7 skipping caused by 5'-splice site mutation of human cathepsin A gene. Yamazaki N; Kanazawa K; Kimura M; Ike H; Shinomiya M; Tanaka S; Shinohara Y; Minakawa N; Itoh K; Takiguchi Y Gene; 2018 Nov; 677():41-48. PubMed ID: 30010039 [TBL] [Abstract][Full Text] [Related]
9. A 5' splice site mutation affecting the pre-mRNA splicing of two upstream exons in the collagen COL1A1 gene. Exon 8 skipping and altered definition of exon 7 generates truncated pro alpha 1(I) chains with a non-collagenous insertion destabilizing the triple helix. Bateman JF; Chan D; Moeller I; Hannagan M; Cole WG Biochem J; 1994 Sep; 302 ( Pt 3)(Pt 3):729-35. PubMed ID: 7945197 [TBL] [Abstract][Full Text] [Related]
10. Combined partial exon skipping and cryptic splice site activation as a new molecular mechanism for recessive type 1 von Willebrand disease. Gallinaro L; Sartorello F; Pontara E; Cattini MG; Bertomoro A; Bartoloni L; Pagnan A; Casonato A Thromb Haemost; 2006 Dec; 96(6):711-6. PubMed ID: 17139363 [TBL] [Abstract][Full Text] [Related]
11. In vitro splicing analysis showed that availability of a cryptic splice site is not a determinant for alternative splicing patterns caused by +1G-->A mutations in introns of the dystrophin gene. Habara Y; Takeshima Y; Awano H; Okizuka Y; Zhang Z; Saiki K; Yagi M; Matsuo M J Med Genet; 2009 Aug; 46(8):542-7. PubMed ID: 19001018 [TBL] [Abstract][Full Text] [Related]
12. Molecular studies on primary lipoprotein lipase (LPL) deficiency. One base deletion (G916) in exon 5 of LPL gene causes no detectable LPL protein due to the absence of LPL mRNA transcript. Takagi A; Ikeda Y; Tsutsumi Z; Shoji T; Yamamoto A J Clin Invest; 1992 Feb; 89(2):581-91. PubMed ID: 1737848 [TBL] [Abstract][Full Text] [Related]
13. A single point mutation in the splice donor site of the low-density-lipoprotein-receptor gene produces intron read-through, exon-skipped and cryptic-site-utilized transcripts. Maruyama T; Miyake Y; Tajima S; Funahashi T; Matsuzawa Y; Yamamoto A Eur J Biochem; 1995 Sep; 232(3):700-5. PubMed ID: 7588706 [TBL] [Abstract][Full Text] [Related]
14. A G-to-A transition at the fifth position of intron-32 of the dystrophin gene inactivates a splice-donor site both in vivo and in vitro. Thi Tran HT; Takeshima Y; Surono A; Yagi M; Wada H; Matsuo M Mol Genet Metab; 2005 Jul; 85(3):213-9. PubMed ID: 15979033 [TBL] [Abstract][Full Text] [Related]
15. Interactions across exons can influence splice site recognition in plant nuclei. McCullough AJ; Baynton CE; Schuler MA Plant Cell; 1996 Dec; 8(12):2295-307. PubMed ID: 8989884 [TBL] [Abstract][Full Text] [Related]
16. Mutational analysis of the U12-dependent branch site consensus sequence. Brock JE; Dietrich RC; Padgett RA RNA; 2008 Nov; 14(11):2430-9. PubMed ID: 18824513 [TBL] [Abstract][Full Text] [Related]
17. In vitro splicing of influenza viral NS1 mRNA and NS1-beta-globin chimeras: possible mechanisms for the control of viral mRNA splicing. Plotch SJ; Krug RM Proc Natl Acad Sci U S A; 1986 Aug; 83(15):5444-8. PubMed ID: 3461442 [TBL] [Abstract][Full Text] [Related]
18. Oriented scanning is the leading mechanism underlying 5' splice site selection in mammals. Borensztajn K; Sobrier ML; Duquesnoy P; Fischer AM; Tapon-Bretaudière J; Amselem S PLoS Genet; 2006 Sep; 2(9):e138. PubMed ID: 16948532 [TBL] [Abstract][Full Text] [Related]
19. Genetic interactions between the 5' and 3' splice site consensus sequences and U6 snRNA during the second catalytic step of pre-mRNA splicing. Collins CA; Guthrie C RNA; 2001 Dec; 7(12):1845-54. PubMed ID: 11780639 [TBL] [Abstract][Full Text] [Related]
20. A novel complex deletion-insertion mutation mediated by Alu repetitive elements leads to lipoprotein lipase deficiency. Okubo M; Horinishi A; Saito M; Ebara T; Endo Y; Kaku K; Murase T; Eto M Mol Genet Metab; 2007 Nov; 92(3):229-33. PubMed ID: 17706445 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]