BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 8242744)

  • 1. Three-dimensional structure of recoverin, a calcium sensor in vision.
    Flaherty KM; Zozulya S; Stryer L; McKay DB
    Cell; 1993 Nov; 75(4):709-16. PubMed ID: 8242744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Secondary structure of myristoylated recoverin determined by three-dimensional heteronuclear NMR: implications for the calcium-myristoyl switch.
    Ames JB; Tanaka T; Stryer L; Ikura M
    Biochemistry; 1994 Sep; 33(35):10743-53. PubMed ID: 8075075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional structure of guanylyl cyclase activating protein-2, a calcium-sensitive modulator of photoreceptor guanylyl cyclases.
    Ames JB; Dizhoor AM; Ikura M; Palczewski K; Stryer L
    J Biol Chem; 1999 Jul; 274(27):19329-37. PubMed ID: 10383444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium-myristoyl protein switch.
    Zozulya S; Stryer L
    Proc Natl Acad Sci U S A; 1992 Dec; 89(23):11569-73. PubMed ID: 1454850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and membrane-targeting mechanism of retinal Ca2+-binding proteins, recoverin and GCAP-2.
    Ames JB; Ikura M
    Adv Exp Med Biol; 2002; 514():333-48. PubMed ID: 12596931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning, expression, and crystallization of recoverin, a calcium sensor in vision.
    Ray S; Zozulya S; Niemi GA; Flaherty KM; Brolley D; Dizhoor AM; McKay DB; Hurley J; Stryer L
    Proc Natl Acad Sci U S A; 1992 Jul; 89(13):5705-9. PubMed ID: 1385864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and calcium-binding studies of a recoverin mutant (E85Q) in an allosteric intermediate state.
    Ames JB; Hamasaki N; Molchanova T
    Biochemistry; 2002 May; 41(18):5776-87. PubMed ID: 11980481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional restoration of the Ca2+-myristoyl switch in a recoverin mutant.
    Senin II; Vaganova SA; Weiergräber OH; Ergorov NS; Philippov PP; Koch KW
    J Mol Biol; 2003 Jul; 330(2):409-18. PubMed ID: 12823978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amino-terminal myristoylation induces cooperative calcium binding to recoverin.
    Ames JB; Porumb T; Tanaka T; Ikura M; Stryer L
    J Biol Chem; 1995 Mar; 270(9):4526-33. PubMed ID: 7876221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of mutations in the calcium-binding sites of recoverin on its calcium affinity: evidence for successive filling of the calcium binding sites.
    Permyakov SE; Cherskaya AM; Senin II; Zargarov AA; Shulga-Morskoy SV; Alekseev AM; Zinchenko DV; Lipkin VM; Philippov PP; Uversky VN; Permyakov EA
    Protein Eng; 2000 Nov; 13(11):783-90. PubMed ID: 11161110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequestration of the membrane-targeting myristoyl group of recoverin in the calcium-free state.
    Tanaka T; Ames JB; Harvey TS; Stryer L; Ikura M
    Nature; 1995 Aug; 376(6539):444-7. PubMed ID: 7630423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Portrait of a myristoyl switch protein.
    Ames JB; Tanaka T; Stryer L; Ikura M
    Curr Opin Struct Biol; 1996 Aug; 6(4):432-8. PubMed ID: 8794166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular structure of membrane-targeting calcium sensors in vision: recoverin and guanylate cyclase-activating protein 2.
    Ames JB; Ikura M; Stryer L
    Methods Enzymol; 2000; 316():121-32. PubMed ID: 10800672
    [No Abstract]   [Full Text] [Related]  

  • 14. Ca2+-myristoyl switch in the neuronal calcium sensor recoverin requires different functions of Ca2+-binding sites.
    Senin II; Fischer T; Komolov KE; Zinchenko DV; Philippov PP; Koch KW
    J Biol Chem; 2002 Dec; 277(52):50365-72. PubMed ID: 12393897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular cloning of hippocalcin, a novel calcium-binding protein of the recoverin family exclusively expressed in hippocampus.
    Kobayashi M; Takamatsu K; Saitoh S; Miura M; Noguchi T
    Biochem Biophys Res Commun; 1992 Nov; 189(1):511-7. PubMed ID: 1280427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of rhodopsin phosphorylation by a family of neuronal calcium sensors.
    De Castro E; Nef S; Fiumelli H; Lenz SE; Kawamura S; Nef P
    Biochem Biophys Res Commun; 1995 Nov; 216(1):133-40. PubMed ID: 7488079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular mechanics of calcium-myristoyl switches.
    Ames JB; Ishima R; Tanaka T; Gordon JI; Stryer L; Ikura M
    Nature; 1997 Sep; 389(6647):198-202. PubMed ID: 9296500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of N-terminal myristoylation on the Ca2+-dependent conformational transition in recoverin.
    Weiergräber OH; Senin II; Philippov PP; Granzin J; Koch KW
    J Biol Chem; 2003 Jun; 278(25):22972-9. PubMed ID: 12686556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure, topology, and dynamics of myristoylated recoverin bound to phospholipid bilayers.
    Valentine KG; Mesleh MF; Opella SJ; Ikura M; Ames JB
    Biochemistry; 2003 Jun; 42(21):6333-40. PubMed ID: 12767213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How can Ca2+ selectively activate recoverin in the presence of Mg2+? Surface plasmon resonance and FT-IR spectroscopic studies.
    Ozawa T; Fukuda M; Nara M; Nakamura A; Komine Y; Kohama K; Umezawa Y
    Biochemistry; 2000 Nov; 39(47):14495-503. PubMed ID: 11087403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.