These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 8242941)

  • 21. The effects of refreezing on the viscoelastic and tensile properties of ligaments.
    Moon DK; Woo SL; Takakura Y; Gabriel MT; Abramowitch SD
    J Biomech; 2006; 39(6):1153-7. PubMed ID: 16549103
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Abnormal joint mechanics and the proteoglycan composition of normal and healing rabbit medial collateral ligament.
    Bishop PB; Bray RC
    J Manipulative Physiol Ther; 1993 Jun; 16(5):300-5. PubMed ID: 8345312
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effects of strain rate on the properties of the medial collateral ligament in skeletally immature and mature rabbits: a biomechanical and histological study.
    Woo SL; Peterson RH; Ohland KJ; Sites TJ; Danto MI
    J Orthop Res; 1990 Sep; 8(5):712-21. PubMed ID: 2388111
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A biomechanical assessment to evaluate breed differences in normal porcine medial collateral ligaments.
    Germscheid NM; Thornton GM; Hart DA; Hildebrand KA
    J Biomech; 2011 Feb; 44(4):725-31. PubMed ID: 21092965
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effects of immobilization on the ultrastructure and mechanical properties of the medial collateral ligament of rats.
    Binkley JM; Peat M
    Clin Orthop Relat Res; 1986 Feb; (203):301-8. PubMed ID: 3955993
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of a new injury model to study medial collateral ligament healing: primary repair versus nonoperative treatment.
    Weiss JA; Woo SL; Ohland KJ; Horibe S; Newton PO
    J Orthop Res; 1991 Jul; 9(4):516-28. PubMed ID: 2045978
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Long-term effects of porcine small intestine submucosa on the healing of medial collateral ligament: a functional tissue engineering study.
    Liang R; Woo SL; Takakura Y; Moon DK; Jia F; Abramowitch SD
    J Orthop Res; 2006 Apr; 24(4):811-9. PubMed ID: 16514641
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative effects of monopolar radiofrequency energy and conservative management of mechanical properties of elongated lateral collateral ligament in rabbits: an experimental study.
    Ilhami K; Eray BM; Gokhan M; Ulukan I; Levent A
    Clin Biomech (Bristol); 2004 Feb; 19(2):184-9. PubMed ID: 14967582
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Effects of immobilization on the mechanical properties of rabbit patellar tendon].
    Ni G; Cheng H; Wu Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 1999 Sep; 16(3):300-2, 306. PubMed ID: 12552748
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural properties of the medial collateral ligament complex of the human knee.
    Robinson JR; Bull AM; Amis AA
    J Biomech; 2005 May; 38(5):1067-74. PubMed ID: 15797588
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exogenous transforming growth factor beta 1 alone does not improve early healing of medial collateral ligament in rabbits.
    Hildebrand KA; Hiraoka H; Hart DA; Shrive NG; Frank CB
    Can J Surg; 2002 Oct; 45(5):330-6. PubMed ID: 12387534
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stress deprivation effect on metabolic turnover of the medial collateral ligament collagen. A comparison between nine- and 12-week immobilization.
    Amiel D; Akeson WH; Harwood FL; Frank CB
    Clin Orthop Relat Res; 1983; (172):265-70. PubMed ID: 6821994
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Collagen expression and biomechanical response to human recombinant transforming growth factor beta (rhTGF-beta2) in the healing rabbit MCL.
    Spindler KP; Dawson JM; Stahlman GC; Davidson JM; Nanney LB
    J Orthop Res; 2002 Mar; 20(2):318-24. PubMed ID: 11918312
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ligament grafts become more susceptible to creep within days after surgery: evidence for early enzymatic degradation of a ligament graft in a rabbit model.
    Boorman RS; Thornton GM; Shrive NG; Frank CB
    Acta Orthop Scand; 2002 Oct; 73(5):568-74. PubMed ID: 12440502
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Early medial collateral ligament scars have inferior creep behaviour.
    Thornton GM; Leask GP; Shrive NG; Frank CB
    J Orthop Res; 2000 Mar; 18(2):238-46. PubMed ID: 10815824
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Early mobilization of rabbit medial collateral ligament repairs: biomechanic and histologic study.
    Goldstein WM; Barmada R
    Arch Phys Med Rehabil; 1984 May; 65(5):239-42. PubMed ID: 6712447
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vascular adaptation of intact joint stabilizing structures in the posterior cruciate ligament deficient rabbit knee.
    Bray RC; Leonard CA; Salo PT
    J Orthop Res; 2003 Sep; 21(5):787-91. PubMed ID: 12919864
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of the muscles around the knee in rabbits whose anterior cruciate and/or medial collateral ligaments were dissected.
    Kilic BA; Dingil O; Erkula G; Elmas C; Erdogan D; Atik OS
    Arch Orthop Trauma Surg; 2004 Nov; 124(9):626-30. PubMed ID: 14762670
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Antiresorptive therapy conserves some periarticular bone and ligament mechanical properties after anterior cruciate ligament disruption in the rabbit knee.
    Doschak MR; Wohl GR; Hanley DA; Bray RC; Zernicke RF
    J Orthop Res; 2004 Sep; 22(5):942-8. PubMed ID: 15304263
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural properties of the primary medial knee ligaments.
    Wijdicks CA; Ewart DT; Nuckley DJ; Johansen S; Engebretsen L; Laprade RF
    Am J Sports Med; 2010 Aug; 38(8):1638-46. PubMed ID: 20675650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.