These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 8243469)
1. Effects of glycosylation on protein structure and dynamics in ribonuclease B and some of its individual glycoforms. Joao HC; Dwek RA Eur J Biochem; 1993 Nov; 218(1):239-44. PubMed ID: 8243469 [TBL] [Abstract][Full Text] [Related]
2. Effects of glycosylation on protein conformation and amide proton exchange rates in RNase B. Joao HC; Scragg IG; Dwek RA FEBS Lett; 1992 Aug; 307(3):343-6. PubMed ID: 1322837 [TBL] [Abstract][Full Text] [Related]
3. Glycoforms modify the dynamic stability and functional activity of an enzyme. Rudd PM; Joao HC; Coghill E; Fiten P; Saunders MR; Opdenakker G; Dwek RA Biochemistry; 1994 Jan; 33(1):17-22. PubMed ID: 8286336 [TBL] [Abstract][Full Text] [Related]
4. Ribonuclease Sa conformational stability studied by NMR-monitored hydrogen exchange. Laurents DV; Scholtz JM; Rico M; Pace CN; Bruix M Biochemistry; 2005 May; 44(21):7644-55. PubMed ID: 15909979 [TBL] [Abstract][Full Text] [Related]
5. Structure and Dynamics of N-Glycosylated Human Ribonuclease 1. Kilgore HR; Latham AP; Ressler VT; Zhang B; Raines RT Biochemistry; 2020 Sep; 59(34):3148-3156. PubMed ID: 32544330 [TBL] [Abstract][Full Text] [Related]
6. A detailed structural characterization of ribonuclease B oligosaccharides by 1H NMR spectroscopy and mass spectrometry. Fu D; Chen L; O'Neill RA Carbohydr Res; 1994 Aug; 261(2):173-86. PubMed ID: 7954510 [TBL] [Abstract][Full Text] [Related]
7. Selective binding of RNase B glycoforms by polydopamine-immobilized concanavalin A. Morris TA; Peterson AW; Tarlov MJ Anal Chem; 2009 Jul; 81(13):5413-20. PubMed ID: 19514701 [TBL] [Abstract][Full Text] [Related]
8. Hydrogen exchange in ribonuclease A and ribonuclease S: evidence for residual structure in the unfolded state under native conditions. Neira JL; Sevilla P; Menéndez M; Bruix M; Rico M J Mol Biol; 1999 Jan; 285(2):627-43. PubMed ID: 9878434 [TBL] [Abstract][Full Text] [Related]
9. Influence of the carbohydrate moiety on the proteolytic cleavage sites in ribonuclease B. Arnold U; Schierhorn A; Ulbrich-Hofmann R J Protein Chem; 1998 Jul; 17(5):397-405. PubMed ID: 9717736 [TBL] [Abstract][Full Text] [Related]
10. The folding pathway of onconase is directed by a conserved intermediate. Schulenburg C; Löw C; Weininger U; Mrestani-Klaus C; Hofmann H; Balbach J; Ulbrich-Hofmann R; Arnold U Biochemistry; 2009 Sep; 48(35):8449-57. PubMed ID: 19655705 [TBL] [Abstract][Full Text] [Related]
11. Investigation of ribonuclease T1 folding intermediates by hydrogen-deuterium amide exchange-two-dimensional NMR spectroscopy. Mullins LS; Pace CN; Raushel FM Biochemistry; 1993 Jun; 32(24):6152-6. PubMed ID: 8512924 [TBL] [Abstract][Full Text] [Related]
12. Differences in conformational dynamics of ribonucleases A and S as observed by infrared spectroscopy and hydrogen-deuterium exchange. Dong A; Hyslop RM; Pringle DL Arch Biochem Biophys; 1996 Sep; 333(1):275-81. PubMed ID: 8806781 [TBL] [Abstract][Full Text] [Related]
13. Glycosylation and specific deamidation of ribonuclease B affect the formation of three-dimensional domain-swapped oligomers. Gotte G; Libonati M; Laurents DV J Biol Chem; 2003 Nov; 278(47):46241-51. PubMed ID: 12966091 [TBL] [Abstract][Full Text] [Related]
14. The structural basis of the difference in sensitivity for PNGase F in the de-N-glycosylation of the native bovine pancreatic ribonucleases B and BS. Blanchard V; Frank M; Leeflang BR; Boelens R; Kamerling JP Biochemistry; 2008 Mar; 47(11):3435-46. PubMed ID: 18293928 [TBL] [Abstract][Full Text] [Related]
15. Nuclear-magnetic-resonance study of the histidine residues of S-peptide and S-protein and kinetics of 1H-2H exchange of ribonuclease A. Bradbury JH; Crompton MW; Teh JS Eur J Biochem; 1977 Dec; 81(2):411-22. PubMed ID: 23288 [TBL] [Abstract][Full Text] [Related]
16. The mechanism of folding of pancreatic ribonucleases is independent of the presence of covalently linked carbohydrate. Grafl R; Lang K; Vogl H; Schmid FX J Biol Chem; 1987 Aug; 262(22):10624-9. PubMed ID: 3611084 [TBL] [Abstract][Full Text] [Related]
17. Capillary electrophoresis-electrospray mass spectrometry for the characterization of high-mannose-type N-glycosylation and differential oxidation in glycoproteins by charge reversal and protease/glycosidase digestion. Liu T; Li JD; Zeng R; Shao XX; Wang KY; Xia QC Anal Chem; 2001 Dec; 73(24):5875-85. PubMed ID: 11791556 [TBL] [Abstract][Full Text] [Related]
18. Nuclear magnetic resonance study on the microenvironments of histidine residues of ribonuclease T1 and carboxymethylated ribonuclease T1. Inagaki F; Kawano Y; Shimada I; Takahashi K; Miyazawa T J Biochem; 1981 Apr; 89(4):1185-95. PubMed ID: 6788755 [TBL] [Abstract][Full Text] [Related]
19. Consequences of the Endogenous N-Glycosylation of Human Ribonuclease 1. Ressler VT; Raines RT Biochemistry; 2019 Feb; 58(7):987-996. PubMed ID: 30633504 [TBL] [Abstract][Full Text] [Related]
20. Contribution of single tryptophan residues to the fluorescence and stability of ribonuclease Sa. Alston RW; Urbanikova L; Sevcik J; Lasagna M; Reinhart GD; Scholtz JM; Pace CN Biophys J; 2004 Dec; 87(6):4036-47. PubMed ID: 15377518 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]