These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 824414)
1. Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. III. Response dynamics. Fernández C; Goldberg JM J Neurophysiol; 1976 Sep; 39(5):996-1008. PubMed ID: 824414 [TBL] [Abstract][Full Text] [Related]
2. Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. I. Response to static tilts and to long-duration centrifugal force. Fernández C; Goldberg JM J Neurophysiol; 1976 Sep; 39(5):970-84. PubMed ID: 824412 [TBL] [Abstract][Full Text] [Related]
3. Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. II. Directional selectivity and force-response relations. Fernández C; Goldberg JM J Neurophysiol; 1976 Sep; 39(5):985-95. PubMed ID: 824413 [TBL] [Abstract][Full Text] [Related]
4. The vestibular nerve of the chinchilla. IV. Discharge properties of utricular afferents. Goldberg JM; Desmadryl G; Baird RA; Fernández C J Neurophysiol; 1990 Apr; 63(4):781-90. PubMed ID: 2341876 [TBL] [Abstract][Full Text] [Related]
5. Physiological identification of morphologically distinct afferent classes innervating the cristae ampullares of the squirrel monkey. Lysakowski A; Minor LB; Fernández C; Goldberg JM J Neurophysiol; 1995 Mar; 73(3):1270-81. PubMed ID: 7608770 [TBL] [Abstract][Full Text] [Related]
6. Response to static tilts of peripheral neurons innervating otolith organs of the squirrel monkey. Fernandez C; Goldberg JM; Abend WK J Neurophysiol; 1972 Nov; 35(6):978-87. PubMed ID: 4631840 [No Abstract] [Full Text] [Related]
7. Relation between discharge regularity and responses to externally applied galvanic currents in vestibular nerve afferents of the squirrel monkey. Goldberg JM; Smith CE; Fernández C J Neurophysiol; 1984 Jun; 51(6):1236-56. PubMed ID: 6737029 [TBL] [Abstract][Full Text] [Related]
8. Single-unit responses to natural vestibular stimuli and eye movements in deep cerebellar nuclei of the alert rhesus monkey. Gardner EP; Fuchs AF J Neurophysiol; 1975 May; 38(3):627-49. PubMed ID: 1079240 [TBL] [Abstract][Full Text] [Related]
9. Inputs from regularly and irregularly discharging vestibular nerve afferents to secondary neurons in the vestibular nuclei of the squirrel monkey. I. An electrophysiological analysis. Goldberg JM; Highstein SM; Moschovakis AK; Fernandez C J Neurophysiol; 1987 Oct; 58(4):700-18. PubMed ID: 3681391 [TBL] [Abstract][Full Text] [Related]
10. Inputs from regularly and irregularly discharging vestibular nerve afferents to secondary neurons in the vestibular nuclei of the squirrel monkey. II. Correlation with output pathways of secondary neurons. Highstein SM; Goldberg JM; Moschovakis AK; Fernández C J Neurophysiol; 1987 Oct; 58(4):719-38. PubMed ID: 2445938 [TBL] [Abstract][Full Text] [Related]
11. Coding of mechanical stimulus velocity and indentation depth by squirrel monkey and raccoon glabrous skin mechanoreceptors. Pubols BH; Pubols LM J Neurophysiol; 1976 Jul; 39(4):773-87. PubMed ID: 823305 [TBL] [Abstract][Full Text] [Related]
12. The response of 8th nerve fibers to horizontal sinusoidal oscillation in the alert monkey. Louie AW; Kimm J Exp Brain Res; 1976 Mar; 24(5):447-57. PubMed ID: 815097 [TBL] [Abstract][Full Text] [Related]
13. Physiologic characteristics of vestibular first-order canal neurons in the cat. II. Response to constant angular acceleration. Blanks RH; Estes MS; Markham CH J Neurophysiol; 1975 Sep; 38(5):1250-68. PubMed ID: 809548 [TBL] [Abstract][Full Text] [Related]
14. Vestibular afferent responses to microrotational stimuli. Myers SF; Lewis ER Brain Res; 1991 Mar; 543(1):36-44. PubMed ID: 2054674 [TBL] [Abstract][Full Text] [Related]
15. Responses of irregularly discharging chinchilla semicircular canal vestibular-nerve afferents during high-frequency head rotations. Hullar TE; Della Santina CC; Hirvonen T; Lasker DM; Carey JP; Minor LB J Neurophysiol; 2005 May; 93(5):2777-86. PubMed ID: 15601735 [TBL] [Abstract][Full Text] [Related]
16. Effects of viewing distance on the responses of horizontal canal-related secondary vestibular neurons during angular head rotation. Chen-Huang C; McCrea RA J Neurophysiol; 1999 May; 81(5):2517-37. PubMed ID: 10322087 [TBL] [Abstract][Full Text] [Related]
17. Inputs from regularly and irregularly discharging vestibular nerve afferents to secondary neurons in squirrel monkey vestibular nuclei. III. Correlation with vestibulospinal and vestibuloocular output pathways. Boyle R; Goldberg JM; Highstein SM J Neurophysiol; 1992 Aug; 68(2):471-84. PubMed ID: 1527570 [TBL] [Abstract][Full Text] [Related]
18. The vestibular nerve of the chinchilla. V. Relation between afferent discharge properties and peripheral innervation patterns in the utricular macula. Goldberg JM; Desmadryl G; Baird RA; Fernández C J Neurophysiol; 1990 Apr; 63(4):791-804. PubMed ID: 2341877 [TBL] [Abstract][Full Text] [Related]
19. The response of primary horizontal semicircular canal neurons in the rat and guinea pig to angular acceleration. Curthoys IS Exp Brain Res; 1982; 47(2):286-94. PubMed ID: 7117453 [TBL] [Abstract][Full Text] [Related]
20. Convergent properties of vestibular-related brain stem neurons in the gerbil. Kaufman GD; Shinder ME; Perachio AA J Neurophysiol; 2000 Apr; 83(4):1958-71. PubMed ID: 10758107 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]