These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 8244428)

  • 1. Automated tuning of a closed-loop hand grasp neuroprosthesis.
    Lemay MA; Crago PE; Katorgi M; Chapman GJ
    IEEE Trans Biomed Eng; 1993 Jul; 40(7):675-85. PubMed ID: 8244428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of input-output properties and control of neuroprosthetic hand grasp.
    Hines AE; Owens NE; Crago PE
    IEEE Trans Biomed Eng; 1992 Jun; 39(6):610-23. PubMed ID: 1601442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An analysis of the input-output properties of neuroprosthetic hand grasps.
    Memberg WD; Crago PE
    J Rehabil Res Dev; 2000; 37(1):11-21. PubMed ID: 10847568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a quantitative hand grasp and release test for patients with tetraplegia using a hand neuroprosthesis.
    Wuolle KS; Van Doren CL; Thrope GB; Keith MW; Peckham PH
    J Hand Surg Am; 1994 Mar; 19(2):209-18. PubMed ID: 8201183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of command algorithms for control of upper-extremity neural prostheses.
    Humbert SD; Snyder SA; Grill WM
    IEEE Trans Neural Syst Rehabil Eng; 2002 Jun; 10(2):94-101. PubMed ID: 12236452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional evaluation of natural sensory feedback incorporated in a hand grasp neuroprosthesis.
    Inmann A; Haugland M
    Med Eng Phys; 2004 Jul; 26(6):439-47. PubMed ID: 15234680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Input-output nonlinearities and time delays increase tracking errors in hand grasp neuroprostheses.
    Adamczyk MM; Crago PE
    IEEE Trans Rehabil Eng; 1996 Dec; 4(4):271-9. PubMed ID: 8973953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feedback regulation of hand grasp opening and contact force during stimulation of paralyzed muscle.
    Crago PE; Nakai RJ; Chizeck HJ
    IEEE Trans Biomed Eng; 1991 Jan; 38(1):17-28. PubMed ID: 2026428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficacy of an implanted neuroprosthesis for restoring hand grasp in tetraplegia: a multicenter study.
    Peckham PH; Keith MW; Kilgore KL; Grill JH; Wuolle KS; Thrope GB; Gorman P; Hobby J; Mulcahey MJ; Carroll S; Hentz VR; Wiegner A;
    Arch Phys Med Rehabil; 2001 Oct; 82(10):1380-8. PubMed ID: 11588741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Instrumented objects for quantitative evaluation of hand grasp.
    Memberg WD; Crago PE
    J Rehabil Res Dev; 1997 Jan; 34(1):82-90. PubMed ID: 9021628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional evaluation of quadriplegic patients using a hand neuroprosthesis.
    Wijman CA; Stroh KC; Van Doren CL; Thrope GB; Peckham PH; Keith MW
    Arch Phys Med Rehabil; 1990 Dec; 71(13):1053-7. PubMed ID: 2256805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implementation of natural sensory feedback in a portable control system for a hand grasp neuroprosthesis.
    Inmann A; Haugland M
    Med Eng Phys; 2004 Jul; 26(6):449-58. PubMed ID: 15234681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Restoration of tetraplegic hand function by use of the neurocontrol freehand system.
    Hobby J; Taylor PN; Esnouf J
    J Hand Surg Br; 2001 Oct; 26(5):459-64. PubMed ID: 11560429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cognitive feedback for use with FES upper extremity neuroprostheses.
    Riso RR; Ignagni AR; Keith MW
    IEEE Trans Biomed Eng; 1991 Jan; 38(1):29-38. PubMed ID: 2026429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strategies for generating prolonged functional standing using intramuscular stimulation or intraspinal microstimulation.
    Lau B; Guevremont L; Mushahwar VK
    IEEE Trans Neural Syst Rehabil Eng; 2007 Jun; 15(2):273-85. PubMed ID: 17601198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EEG-based neuroprosthesis control: a step towards clinical practice.
    Müller-Putz GR; Scherer R; Pfurtscheller G; Rupp R
    Neurosci Lett; 2005 Jul 1-8; 382(1-2):169-74. PubMed ID: 15911143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic control of stimulated pronosupination with the stimulated grasp of persons with tetraplegia.
    Scott TR; Atmore L; Heasman JM; Flynn RY; Vare VA; Gschwind C
    IEEE Trans Neural Syst Rehabil Eng; 2001 Sep; 9(3):258-64. PubMed ID: 11561661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wireless wearable controller for upper-limb neuroprosthesis.
    Wheeler CA; Peckham PH
    J Rehabil Res Dev; 2009; 46(2):243-56. PubMed ID: 19533538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of hand grasp using functional neuromuscular stimulation.
    Kilgore KL; Peckham PH; Thrope GB; Keith MW; Gallaher-Stone KA
    IEEE Trans Biomed Eng; 1989 Jul; 36(7):761-70. PubMed ID: 2787284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Task-based methods for evaluating electrically stimulated antagonist muscle controllers.
    Durfee WK
    IEEE Trans Biomed Eng; 1989 Mar; 36(3):309-21. PubMed ID: 2784126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.