BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 8244761)

  • 21. RUFY4 deletion prevents pathological bone loss by blocking endo-lysosomal trafficking of osteoclasts.
    Kim M; Park JH; Go M; Lee N; Seo J; Lee H; Kim D; Ha H; Kim T; Jeong MS; Kim S; Kim T; Kim HS; Kang D; Shim H; Lee SY
    Bone Res; 2024 May; 12(1):29. PubMed ID: 38744829
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Autophagy proteins regulate the secretory component of osteoclastic bone resorption.
    DeSelm CJ; Miller BC; Zou W; Beatty WL; van Meel E; Takahata Y; Klumperman J; Tooze SA; Teitelbaum SL; Virgin HW
    Dev Cell; 2011 Nov; 21(5):966-74. PubMed ID: 22055344
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transport of acid phosphatase to lysosomes does not involve passage through the cell surface.
    Tanaka Y; Yano S; Furuno K; Ishikawa T; Himeno M; Kato K
    Biochem Biophys Res Commun; 1990 Aug; 170(3):1067-73. PubMed ID: 2390074
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The ruffled border and attachment regions of the apposing membrane of resorbing osteoclasts as visualized from the cytoplasmic face of the membrane.
    Akisaka T; Yoshida H; Suzuki R
    J Electron Microsc (Tokyo); 2006 Apr; 55(2):53-61. PubMed ID: 16775216
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Actin-binding protein coronin 1A controls osteoclastic bone resorption by regulating lysosomal secretion of cathepsin K.
    Ohmae S; Noma N; Toyomoto M; Shinohara M; Takeiri M; Fuji H; Takemoto K; Iwaisako K; Fujita T; Takeda N; Kawatani M; Aoyama M; Hagiwara M; Ishihama Y; Asagiri M
    Sci Rep; 2017 Mar; 7():41710. PubMed ID: 28300073
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Leucine Repeat Rich Kinase 1 Controls Osteoclast Activity by Managing Lysosomal Trafficking and Secretion.
    Shen S; Si M; Zeng C; Liu EK; Chen Y; Vacher J; Zhao H; Mohan S; Xing W
    Biology (Basel); 2023 Mar; 12(4):. PubMed ID: 37106712
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Downregulation of small GTPase Rab7 impairs osteoclast polarization and bone resorption.
    Zhao H; Laitala-Leinonen T; Parikka V; Väänänen HK
    J Biol Chem; 2001 Oct; 276(42):39295-302. PubMed ID: 11514537
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcytosis of calcium from bone by osteoclast-like cells evidenced by direct visualization of calcium in cells.
    Yamaki M; Nakamura H; Takahashi N; Udagawa N; Ozawa H
    Arch Biochem Biophys; 2005 Aug; 440(1):10-7. PubMed ID: 15993377
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Osteoclasts in bone metabolism].
    Hakeda Y; Kumegawa M
    Kaibogaku Zasshi; 1991 Aug; 66(4):215-25. PubMed ID: 1759556
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Formation and function of the ruffled border in osteoclasts.
    Stenbeck G
    Semin Cell Dev Biol; 2002 Aug; 13(4):285-92. PubMed ID: 12243728
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A difference in the enzyme contents of resorption lacunae and secondary lysosomes of osteoclasts.
    Karhukorpi EK; Vihko P; Väänänen K
    Acta Histochem; 1992; 92(1):1-11. PubMed ID: 1580139
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tetracycline administration normalizes the structure and acid phosphatase activity of osteoclasts in streptozotocin-induced diabetic rats.
    Kaneko H; Sasaki T; Ramamurthy NS; Golub LM
    Anat Rec; 1990 Aug; 227(4):427-36. PubMed ID: 2168133
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hem1 is essential for ruffled border formation in osteoclasts and efficient bone resorption.
    Werbenko E; de Gorter DJJ; Kleimann S; Beckmann D; Waltereit-Kracke V; Reinhardt J; Geers F; Paruzel P; Hansen U; Pap T; Stradal TEB; Dankbar B
    Sci Rep; 2024 Apr; 14(1):8109. PubMed ID: 38582757
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intracellular membrane trafficking pathways in bone-resorbing osteoclasts revealed by cloning and subcellular localization studies of small GTP-binding rab proteins.
    Zhao H; Ettala O; Väänänen HK
    Biochem Biophys Res Commun; 2002 May; 293(3):1060-5. PubMed ID: 12051767
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of the functional stages of osteoclasts by enzyme histochemistry and electron microscopy.
    Fukushima O; Bekker PJ; Gay CV
    Anat Rec; 1991 Nov; 231(3):298-315. PubMed ID: 1662472
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vesicular trafficking in osteoclasts.
    Coxon FP; Taylor A
    Semin Cell Dev Biol; 2008 Oct; 19(5):424-33. PubMed ID: 18768162
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Disruption of the dynein-dynactin complex unveils motor-specific functions in osteoclast formation and bone resorption.
    Ng PY; Cheng TS; Zhao H; Ye S; Sm Ang E; Khor EC; Feng HT; Xu J; Zheng MH; Pavlos NJ
    J Bone Miner Res; 2013 Jan; 28(1):119-34. PubMed ID: 22887640
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Osteoclast differentiation at growth plate cartilage-trabecular bone junction in newborn rat femur.
    Sawae Y; Sahara T; Sasaki T
    J Electron Microsc (Tokyo); 2003; 52(6):493-502. PubMed ID: 14756237
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Removal of osteoclast bone resorption products by transcytosis.
    Salo J; Lehenkari P; Mulari M; Metsikkö K; Väänänen HK
    Science; 1997 Apr; 276(5310):270-3. PubMed ID: 9092479
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An assay system utilizing devitalized bone for assessment of differentiation of osteoclast progenitors.
    Amano S; Hanazawa S; Kawata Y; Ohta K; Kitami H; Kitano S
    J Bone Miner Res; 1992 Mar; 7(3):321-8. PubMed ID: 1585834
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.