BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 8245042)

  • 1. Development of FRP composite structural biomaterials: fatigue strength of the fiber/matrix interfacial bond in simulated in vivo environments.
    Latour RA; Black J
    J Biomed Mater Res; 1993 Oct; 27(10):1281-91. PubMed ID: 8245042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of FRP composite structural biomaterials: ultimate strength of the fiber/matrix interfacial bond in in vivo simulated environments.
    Latour RA; Black J
    J Biomed Mater Res; 1992 May; 26(5):593-606. PubMed ID: 1512281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term durability of the interface in FRP composites after exposure to simulated physiologic saline environments.
    Meyer MR; Friedman RJ; Del Schutte H; Latour RA
    J Biomed Mater Res; 1994 Oct; 28(10):1221-31. PubMed ID: 7829551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon fiber-reinforced bone cement in orthopedic surgery.
    Pilliar RM; Blackwell R; Macnab I; Cameron HU
    J Biomed Mater Res; 1976 Nov; 10(6):893-906. PubMed ID: 993226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone.
    Chong AC; Miller F; Buxton M; Friis EA
    J Biomech Eng; 2007 Aug; 129(4):487-93. PubMed ID: 17655469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A high-modulus polymer for porous orthopedic implants: biomechanical compatibility of porous implants.
    Spector M; Michno MJ; Smarook WH; Kwiatkowski GT
    J Biomed Mater Res; 1978 Sep; 12(5):665-77. PubMed ID: 701302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of airborne-particle abrasion on mechanical properties and bond strength of carbon/epoxy and glass/bis-GMA fiber-reinforced resin posts.
    Soares CJ; Santana FR; Pereira JC; Araujo TS; Menezes MS
    J Prosthet Dent; 2008 Jun; 99(6):444-54. PubMed ID: 18514666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of blood-compatible hollow fibers from a polymer alloy composed of polysulfone and 2-methacryloyloxyethyl phosphorylcholine polymer.
    Hasegawa T; Iwasaki Y; Ishihara K
    J Biomed Mater Res; 2002; 63(3):333-41. PubMed ID: 12115766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro biocompatibility of polyetheretherketone and polysulfone composites.
    Wenz LM; Merritt K; Brown SA; Moet A; Steffee AD
    J Biomed Mater Res; 1990 Feb; 24(2):207-15. PubMed ID: 2329115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical fatigue analysis of an advanced new carbon fiber/flax/epoxy plate for bone fracture repair using conventional fatigue tests and thermography.
    Bagheri ZS; El Sawi I; Bougherara H; Zdero R
    J Mech Behav Biomed Mater; 2014 Jul; 35():27-38. PubMed ID: 24727574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Experimental protocol for mechanical characterization of a femoral implant of carbon-Peek composite hip prosthesis in fatigue].
    Soyer J
    Chirurgie; 1997 Jan; 121(9-10):658-62. PubMed ID: 9138327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Composite technology for total hip arthroplasty.
    Skinner HB
    Clin Orthop Relat Res; 1988 Oct; (235):224-36. PubMed ID: 3416528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The corrosion fatigue properties of surgical implants in a living body.
    Morita M; Sasada T; Hayashi H; Tsukamoto Y
    J Biomed Mater Res; 1988 Jun; 22(6):529-40. PubMed ID: 3410871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro evaluation of push-out bond strength of direct ceramic inlays to tooth surface with fiber-reinforced composite at the interface.
    Cekic I; Ergun G; Uctasli S; Lassila LV
    J Prosthet Dent; 2007 May; 97(5):271-8. PubMed ID: 17547945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Carbon fiber-reinforced polysulfone as an implant material. Physical properties and biological studies].
    Foerster W; Hüttner W; Kirschner H
    Dtsch Z Mund Kiefer Gesichtschir; 1984; 8(6):437-40. PubMed ID: 6398151
    [No Abstract]   [Full Text] [Related]  

  • 16. Preliminary characterization of bioresorbable and nonresorbable synthetic fibers for the repair of soft tissue injuries.
    Shieh SJ; Zimmerman MC; Parsons JR
    J Biomed Mater Res; 1990 Jul; 24(7):789-808. PubMed ID: 2398072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a multi-component fiber-reinforced composite implant for load-sharing conditions.
    Zhao DS; Moritz N; Laurila P; Mattila R; Lassila LV; Strandberg N; Mäntylä T; Vallittu PK; Aro HT
    Med Eng Phys; 2009 May; 31(4):461-9. PubMed ID: 19109047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Augmentation of acrylic bone cement with multiwall carbon nanotubes.
    Marrs B; Andrews R; Rantell T; Pienkowski D
    J Biomed Mater Res A; 2006 May; 77(2):269-76. PubMed ID: 16392130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical and histological fixation of hydroxylapatite-coated pyrolytic carbon and titanium alloy implants: a report of short-term results.
    Hetherington VJ; Lord CE; Brown SA
    J Appl Biomater; 1995; 6(4):243-8. PubMed ID: 8589509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bond strength between a silica glass-fiber-reinforced composite and artificial polymer teeth.
    Meriç G; Ruyter IE
    Acta Odontol Scand; 2007 Oct; 65(5):306-12. PubMed ID: 18092203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.