These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 8245428)

  • 21. Topochemistry of trace metals in nasal mucosa. Potentialities of some histochemical methods and energy dispersive X-ray microanalysis.
    Torjussen W; Haug FM; Olsen A; Andersen I
    Acta Histochem; 1978; 63(1):11-25. PubMed ID: 105552
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Increased acetylcholinesterase activities in specimens of Sparus auratus exposed to sublethal copper concentrations.
    Romani R; Antognelli C; Baldracchini F; De Santis A; Isani G; Giovannini E; Rosi G
    Chem Biol Interact; 2003 Jun; 145(3):321-9. PubMed ID: 12732458
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Energy dispersive x-ray microanalysis of human and rat brain tissue in dry cryostate sections.
    Schlote W; Wolburg H; Wendt-Gallitelli MF
    Microsc Acta Suppl; 1978; (2):142-55. PubMed ID: 293471
    [No Abstract]   [Full Text] [Related]  

  • 24. Multivariate statistical analysis of electron probe microanalytical data on cell nuclear constituents.
    Quintana C; Ollacarizqueta A
    Ultramicroscopy; 1989 Apr; 28(1-4):315-9. PubMed ID: 2711523
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Studies on the distribution of mineral elements in the tooth of zinc-deficient rats.
    Teraki Y; Ishiyama M
    Shigaku; 1990 Aug; 78(2):251-7. PubMed ID: 2134964
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distributions of choline acetyltransferase and acetylcholinesterase activities in layers of rat superior colliculus.
    Ross CD; Godfrey DA
    J Histochem Cytochem; 1985 Jul; 33(7):631-41. PubMed ID: 4008917
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Estimation of the copper-iron correlation in the liver under experimental conditions. A microscopic and microchemical study.
    Cuida I; Onicescu D; Ionescu N
    Morphol Embryol (Bucur); 1980; 26(3):237-9. PubMed ID: 6453285
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative quantitative study of the intrinsic cardiac ganglia and neurons in the rat, guinea pig, dog and human as revealed by histochemical staining for acetylcholinesterase.
    Pauza DH; Pauziene N; Pakeltyte G; Stropus R
    Ann Anat; 2002 Mar; 184(2):125-36. PubMed ID: 11936191
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Scanning electron microscopy and X-ray microprobe analysis in detection of acetylcholinesterase in cultured embryonal carcinoma cells.
    Rechardt L; Lehtinen S; Wartiovaara J
    J Histochem Cytochem; 1984 Nov; 32(11):1154-8. PubMed ID: 6491254
    [TBL] [Abstract][Full Text] [Related]  

  • 30. X-ray microanalysis in the scanning electron microscope.
    Roomans GM; Dragomir A
    Methods Mol Biol; 2014; 1117():639-61. PubMed ID: 24357383
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative study of the measurement of enamel demineralization and remineralization using transverse microradiography and electron probe microanalysis.
    Cochrane NJ; Iijima Y; Shen P; Yuan Y; Walker GD; Reynolds C; MacRae CM; Wilson NC; Adams GG; Reynolds EC
    Microsc Microanal; 2014 Jun; 20(3):937-45. PubMed ID: 24758749
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Standards for X-ray microanalysis of calcified structures.
    Lopez-Escamez JA; Campos A
    Scanning Microsc Suppl; 1994; 8():171-85. PubMed ID: 7638486
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preliminary studies of acetylcholinesterase activity in the rat brain using N-phenylferrocenecarboxamide labelled by the technetium-99m.
    Mejri N; Said NM; Guizani S; Essouissi I; Saidi M
    Nucl Med Biol; 2013 May; 40(4):561-6. PubMed ID: 23465564
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Activity of acetylcholine hydrolase (EC 3.1.1.7) in the pig brain; spectrophotometric and histochemical studies in the light and electron microscope.
    Wawrzyniak M; Cybulska R; Radymska-Wawrzyniak K
    Folia Histochem Cytochem (Krakow); 1980; 18(2):113-22. PubMed ID: 7450601
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Uniformity and physical states of troglitazone in solid dispersions determined by electron probe microanalysis and microthermal analysis.
    Hasegawa S; Hamaura T; Furuyama N; Horikawa S; Kusai A; Yonemochi E; Terada K
    Int J Pharm; 2004 Aug; 280(1-2):39-46. PubMed ID: 15265545
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative electron probe microanalysis of biological thin sections: the use of stem for measurement of local mass thickness.
    Halloran BP; Kirk RG; Spurr AR
    Ultramicroscopy; 1978; 3(2):175-84. PubMed ID: 695131
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electron probe X-ray microanalysis for the study of cell physiology.
    Fernandez-Segura E; Warley A
    Methods Cell Biol; 2008; 88():19-43. PubMed ID: 18617026
    [TBL] [Abstract][Full Text] [Related]  

  • 38. X-ray microanalysis of freeze-dried and frozen-hydrated cryosections.
    Zierold K
    J Electron Microsc Tech; 1988 May; 9(1):65-82. PubMed ID: 3199231
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Method of computing the volumetric concentration of elements in thin tissue sections based on x-ray spectral microanalysis data].
    Pogorelov AG; Allakhverdov BL
    Tsitologiia; 1982 Jul; 24(7):823-6. PubMed ID: 6753276
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electron microscopic localization of acetylcholinesterase activity in the central nervous system: chemical basis of a catalytic activity of Hatchett's brown (cupric ferrocyanide) precipitate revealed by 3,3'-diaminobenzidine.
    Tsuji S
    Folia Histochem Cytobiol; 1998; 36(2):67-70. PubMed ID: 9606620
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.