BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 8245477)

  • 21. Mice with IFN-gamma receptor deficiency are less susceptible to experimental autoimmune myasthenia gravis.
    Zhang GX; Xiao BG; Bai XF; van der Meide PH; Orn A; Link H
    J Immunol; 1999 Apr; 162(7):3775-81. PubMed ID: 10201893
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acetylcholine receptor gene expression in experimental autoimmune myasthenia gravis.
    Asher O; Neumann D; Witzemann V; Fuchs S
    FEBS Lett; 1990 Jul; 267(2):231-5. PubMed ID: 2379584
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acetylcholine receptor alpha-subunit and myogenin mRNAs in thymus and thymomas.
    Kornstein MJ; Asher O; Fuchs S
    Am J Pathol; 1995 Jun; 146(6):1320-4. PubMed ID: 7778671
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of the main immunogenic region of acetylcholine receptor in myasthenia gravis. An Fab monoclonal antibody protects against antigenic modulation by human sera.
    Tzartos SJ; Sophianos D; Efthimiadis A
    J Immunol; 1985 Apr; 134(4):2343-9. PubMed ID: 3973387
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recombinant human acetylcholine receptor alpha-subunit induces chronic experimental autoimmune myasthenia gravis.
    Lennon VA; Lambert EH; Leiby KR; Okarma TB; Talib S
    J Immunol; 1991 Apr; 146(7):2245-8. PubMed ID: 2005394
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Changes in acetylcholinesterase in experimental autoimmune myasthenia gravis and in response to treatment with a specific antisense.
    Blotnick E; Hamra-Amitai Y; Wald C; Brenner T; Anglister L
    Eur J Neurosci; 2012 Oct; 36(8):3077-85. PubMed ID: 22805122
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Suppression of experimental myasthenia gravis by a B-cell epitope-free recombinant acetylcholine receptor.
    Yi HJ; Chae CS; So JS; Tzartos SJ; Souroujon MC; Fuchs S; Im SH
    Mol Immunol; 2008 Nov; 46(1):192-201. PubMed ID: 18799218
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acetylcholine receptor expression in human extraocular muscles and their susceptibility to myasthenia gravis.
    MacLennan C; Beeson D; Buijs AM; Vincent A; Newsom-Davis J
    Ann Neurol; 1997 Apr; 41(4):423-31. PubMed ID: 9124798
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Complement regulators in extraocular muscle and experimental autoimmune myasthenia gravis.
    Kaminski HJ; Li Z; Richmonds C; Lin F; Medof ME
    Exp Neurol; 2004 Oct; 189(2):333-42. PubMed ID: 15380483
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of the target organ in determining susceptibility to experimental autoimmune myasthenia gravis.
    Hoedemaekers A; Bessereau JL; Graus Y; Guyon T; Changeux JP; Berrih-Aknin S; van Breda Vriesman P; De Baets MH
    J Neuroimmunol; 1998 Aug; 89(1-2):131-41. PubMed ID: 9726835
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of the rate of acetylcholine receptor synthesis on the severity of experimental autoimmune myasthenia gravis.
    De Baets MH; Verschuuren J; Daha MR; van Breda Vriesman PJ
    Immunol Res; 1988; 7(3):200-11. PubMed ID: 3264006
    [TBL] [Abstract][Full Text] [Related]  

  • 32. T cell reactivity to acetylcholine receptor in rats orally tolerized against experimental autoimmune myasthenia gravis.
    Wang ZY; Qiao J; Melms A; Link H
    Cell Immunol; 1993 Dec; 152(2):394-404. PubMed ID: 8258147
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role for interferon-gamma in rat strains with different susceptibility to experimental autoimmune myasthenia gravis.
    Wang HB; Shi FD; Li H; van der Meide PH; Ljunggren HG; Link H
    Clin Immunol; 2000 May; 95(2):156-62. PubMed ID: 10779409
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Compartmentalized transcription of acetylcholine receptor genes during motor endplate epigenesis.
    Changeux JP
    New Biol; 1991 May; 3(5):413-29. PubMed ID: 1883810
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Passive transfer of experimental autoimmune myasthenia gravis by monoclonal antibodies to the main immunogenic region of the acetylcholine receptor.
    Tzartos S; Hochschwender S; Vasquez P; Lindstrom J
    J Neuroimmunol; 1987 Jun; 15(2):185-94. PubMed ID: 3495549
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modulation of acetylcholine receptor expression in seronegative myasthenia gravis.
    Poea S; Guyon T; Bidault J; Bruand C; Mouly V; Berrih-Aknin S
    Ann Neurol; 2000 Nov; 48(5):696-705. PubMed ID: 11079532
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Expression of the alpha 7 subunit of the nicotinic acetylcholine receptor in normal and myasthenic human thymuses.
    Navaneetham D; Penn A; Howard J; Conti-Fine BM
    Cell Mol Biol (Noisy-le-grand); 1997 May; 43(3):433-42. PubMed ID: 9193799
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prevention and reversal of experimental autoimmune myasthenia gravis by a monoclonal antibody against acetylcholine receptor-specific T cells.
    Xu L; Villain M; Galin FS; Araga S; Blalock JE
    Cell Immunol; 2001 Mar; 208(2):107-14. PubMed ID: 11333143
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Overexpression of phosphodiesterases in experimental autoimmune myasthenia gravis: suppression of disease by a phosphodiesterase inhibitor.
    Aricha R; Feferman T; Souroujon MC; Fuchs S
    FASEB J; 2006 Feb; 20(2):374-6. PubMed ID: 16365386
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Experimental autoimmune myasthenia gravis in B10.BV8S2 transgenic mice: preferential usage of TCRAV1 gene by lymphocytes responding to acetylcholine receptor.
    Kaul R; Wu B; Goluszko E; Deng C; Dedhia V; Nabozny GH; David CS; Rimm IJ; Shenoy M; Haqqi TM; Christadoss P
    J Immunol; 1997 Jun; 158(12):6006-12. PubMed ID: 9190955
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.