BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 8245576)

  • 1. Stanford 3D hyperthermia treatment planning system. Technical review and clinical summary.
    Sullivan DM; Ben-Yosef R; Kapp DS
    Int J Hyperthermia; 1993; 9(5):627-43. PubMed ID: 8245576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal distribution of radio-frequency inductive hyperthermia using an inductive aperture-type applicator: evaluation of the effect of tumour size and depth.
    Kuroda S; Uchida N; Sugimura K; Kato H
    Med Biol Eng Comput; 1999 May; 37(3):285-90. PubMed ID: 10505376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive radiofrequency hyperthermia-phased array system for improved cancer therapy: phantom target measurements.
    Fenn AJ; King GA
    Int J Hyperthermia; 1994; 10(2):189-208. PubMed ID: 8064180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental and numerical investigation of feed-point parameters in a 3-D hyperthermia applicator using different FDTD models of feed networks.
    Nadobny J; Fähling H; Hagmann MJ; Turner PF; Wlodarczyk W; Gellermann JM; Deuflhard P; Wust P
    IEEE Trans Biomed Eng; 2002 Nov; 49(11):1348-59. PubMed ID: 12450365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quality assurance in various radiative hyperthermia systems applying a phantom with LED matrix.
    Schneider CJ; van Dijk JD; De Leeuw AA; Wust P; Baumhoer W
    Int J Hyperthermia; 1994; 10(5):733-47. PubMed ID: 7806928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stanford University institutional report. Phase I evaluation of equipment for hyperthermia treatment of cancer.
    Kapp DS; Fessenden P; Samulski TV; Bagshaw MA; Cox RS; Lee ER; Lohrbach AW; Meyer JL; Prionas SD
    Int J Hyperthermia; 1988; 4(1):75-115. PubMed ID: 3346585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An on-line phase measurement system for quality assurance of the BSD 2000. Part I: technical description of the measurement system.
    Gromoll C; Lamprecht U; Hehr T; Buchgeister M; Bamberg M
    Int J Hyperthermia; 2000; 16(4):355-63. PubMed ID: 10949131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Part-body hyperthermia with a radiofrequency multiantenna applicator under online control in a 1.5 T MR-tomograph].
    Wust P; Gellermann J; Seebass M; Fähling H; Turner P; Wlodarczyk W; Nadobny J; Rau B; Hildebrandt B; Oppelt A; Schlag PM; Felix R
    Rofo; 2004 Mar; 176(3):363-74. PubMed ID: 15026950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of an inductive, non-invasive RF applicator for studying hyperthermia in a rat brain tumour model.
    Heinzl L; Hunt JW; Bernstein M
    Int J Hyperthermia; 1991; 7(2):301-15. PubMed ID: 1880457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prospective treatment planning to improve locoregional hyperthermia for oesophageal cancer.
    Kok HP; van Haaren PM; van de Kamer JB; Zum Vörde Sive Vörding PJ; Wiersma J; Hulshof MC; Geijsen ED; van Lanschot JJ; Crezee J
    Int J Hyperthermia; 2006 Aug; 22(5):375-89. PubMed ID: 16891240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Creation of three-dimensional patient models for hyperthermia treatment planning.
    James BJ; Sullivan DM
    IEEE Trans Biomed Eng; 1992 Mar; 39(3):238-42. PubMed ID: 1555853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct use of CT scans for hyperthermia treatment planning.
    James BJ; Sullivan DM
    IEEE Trans Biomed Eng; 1992 Aug; 39(8):845-51. PubMed ID: 1505997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Edge-element based finite element analysis of microwave hyperthermia treatments for superficial tumours on the chest wall.
    Kumaradas JC; Sherar MD
    Int J Hyperthermia; 2003; 19(4):414-30. PubMed ID: 12850927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical use of the hyperthermia treatment planning system HyperPlan to predict effectiveness and toxicity.
    Sreenivasa G; Gellermann J; Rau B; Nadobny J; Schlag P; Deuflhard P; Felix R; Wust P
    Int J Radiat Oncol Biol Phys; 2003 Feb; 55(2):407-19. PubMed ID: 12527054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep local hyperthermia for cancer therapy: external electromagnetic and ultrasound techniques.
    Cheung AY; Neyzari A
    Cancer Res; 1984 Oct; 44(10 Suppl):4736s-4744s. PubMed ID: 6467228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing the properties of beam forming bolus in hyperthermia: numerical simulation and empirical verification.
    Aghayan SA; Sardari D; Mahdavi SR; Mohammadi M
    Australas Phys Eng Sci Med; 2014 Dec; 37(4):691-703. PubMed ID: 25318411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of the sources in local hyperthermia using a combined finite element-genetic algorithm method.
    Siauve N; Nicolas L; Vollaire C; Marchal C
    Int J Hyperthermia; 2004 Dec; 20(8):815-33. PubMed ID: 15764344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The concept of using multifrequency energy transmission to reduce hot spots during deep-body hyperthermia.
    Jacobsen S; Melandsø F
    Ann Biomed Eng; 2002 Jan; 30(1):34-43. PubMed ID: 11874140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A clinical water-coated antenna applicator for MR-controlled deep-body hyperthermia: a comparison of calculated and measured 3-D temperature data sets.
    Nadobny J; Wlodarczyk W; Westhoff L; Gellermann J; Felix R; Wust P
    IEEE Trans Biomed Eng; 2005 Mar; 52(3):505-19. PubMed ID: 15759581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electromagnetic-thermal analysis of an RF rectangular resonant cavity applicator for hyperthermia targeting deep-seated tumors using a human model with blood flow and fat layer.
    Tange Y; Kanai Y; Saitoh Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4368-71. PubMed ID: 19163681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.