These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 8245732)
1. Equilibrium model of a vascularized spherical carcinoma with central necrosis--some properties of the solution. Adam JA; Noren RD J Math Biol; 1993; 31(7):735-45. PubMed ID: 8245732 [TBL] [Abstract][Full Text] [Related]
2. Growth of nonnecrotic tumors in the presence and absence of inhibitors. Byrne HM; Chaplain MA Math Biosci; 1995 Dec; 130(2):151-81. PubMed ID: 8527869 [TBL] [Abstract][Full Text] [Related]
3. Growth of necrotic tumors in the presence and absence of inhibitors. Byrne HM; Chaplin MA Math Biosci; 1996 Jul; 135(2):187-216. PubMed ID: 8768220 [TBL] [Abstract][Full Text] [Related]
4. Analysis of a mathematical model for the growth of tumors. Friedman A; Reitich F J Math Biol; 1999 Mar; 38(3):262-84. PubMed ID: 10220926 [TBL] [Abstract][Full Text] [Related]
5. Diffusion regulated growth characteristics of a spherical prevascular carcinoma. Adam JA; Maggelakis SA Bull Math Biol; 1990; 52(4):549-82. PubMed ID: 2397329 [TBL] [Abstract][Full Text] [Related]
6. The importance of intercellular adhesion in the development of carcinomas. Byrne HM IMA J Math Appl Med Biol; 1997 Dec; 14(4):305-23. PubMed ID: 9415997 [TBL] [Abstract][Full Text] [Related]
7. Differential equations with applications in cancer diseases. Ilea M; Turnea M; Rotariu M Rev Med Chir Soc Med Nat Iasi; 2013; 117(2):572-7. PubMed ID: 24340548 [TBL] [Abstract][Full Text] [Related]
8. Model for the growth of a solid in vitro tumor. Deakin AS Growth; 1975 Mar; 39(1):159-65. PubMed ID: 1132772 [TBL] [Abstract][Full Text] [Related]
9. Tumour dynamics and necrosis: surface tension and stability. Landman KA; Please CP IMA J Math Appl Med Biol; 2001 Jun; 18(2):131-58. PubMed ID: 11453466 [TBL] [Abstract][Full Text] [Related]
10. Mathematical models of tumor growth. IV. Effects of a necrotic core. Adam JA; Maggelakis SA Math Biosci; 1989 Nov; 97(1):121-36. PubMed ID: 2520203 [TBL] [Abstract][Full Text] [Related]
11. Asymmetric growth of models of avascular solid tumours: exploiting symmetries. Byrne H; Matthews P IMA J Math Appl Med Biol; 2002 Mar; 19(1):1-29. PubMed ID: 12408222 [TBL] [Abstract][Full Text] [Related]
12. The impact of including spatially longitudinal heterogeneities of vessel oxygen content and vascular fraction in 3D tumor oxygenation models on predicted radiation sensitivity. Lagerlöf JH; Kindblom J; Bernhardt P Med Phys; 2014 Apr; 41(4):044101. PubMed ID: 24694162 [TBL] [Abstract][Full Text] [Related]
13. Modeling tumor growth. Calderón CP; Kwembe TA Math Biosci; 1991 Feb; 103(1):97-114. PubMed ID: 1804444 [TBL] [Abstract][Full Text] [Related]
14. Diffusion model of tumor vascularization and growth. Liotta LA; Saidel GM; Kleinerman J Bull Math Biol; 1977; 39(1):117-28. PubMed ID: 830188 [No Abstract] [Full Text] [Related]
15. A study on the expectational model for tumor growth. Xu XL; Ling YB Int J Biomed Comput; 1988 Mar; 22(2):135-41. PubMed ID: 3384503 [TBL] [Abstract][Full Text] [Related]
16. The diffusion of an inhibitor in a spherical tumor. Swan GW Math Biosci; 1992 Feb; 108(1):75-9. PubMed ID: 1550998 [TBL] [Abstract][Full Text] [Related]
17. Biological growth on a surface. Wang CY; Bassingthwaighte JB Math Biosci; 1997 Jun; 142(2):91-106. PubMed ID: 9159060 [TBL] [Abstract][Full Text] [Related]
18. Interactions between a uniformly proliferating tumour and its surroundings: uniform material properties. Franks SJ; King JR Math Med Biol; 2003 Mar; 20(1):47-89. PubMed ID: 12974498 [TBL] [Abstract][Full Text] [Related]