BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 8245955)

  • 1. Further characterization of the redox and spectroscopic properties of Azotobacter vinelandii ferritin.
    Watt GD; McDonald JW; Chiu CH; Reddy KR
    J Inorg Biochem; 1993 Sep; 51(4):745-58. PubMed ID: 8245955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fe2+ and phosphate interactions in bacterial ferritin from Azotobacter vinelandii.
    Watt GD; Frankel RB; Jacobs D; Huang H; Papaefthymiou GC
    Biochemistry; 1992 Jun; 31(24):5672-9. PubMed ID: 1610815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron exchange between Fe(II)-horse spleen ferritin and Co(III)/Mn(III) reconstituted horse spleen and Azotobacter vinelandii ferritins.
    Zhang B; Harb JN; Davis RC; Choi S; Kim JW; Miller T; Chu SH; Watt GD
    Biochemistry; 2006 May; 45(18):5766-74. PubMed ID: 16669620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on the heme and H2-uptake reaction from Azotobacter vinelandii bacterial ferritin.
    Huang HQ; Lin QM; Zhang FZ; Chen CH; Chen X; Chen Z
    Bioelectrochem Bioenerg; 1999 Feb; 48(1):87-93. PubMed ID: 10228574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A kinetic study of iron release from Azotobacter vinelandii bacterial ferritin.
    Richards TD; Pitts KR; Watt GD
    J Inorg Biochem; 1996 Jan; 61(1):1-13. PubMed ID: 8558133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. E.p.r. and magnetic circular dichroism spectroscopic characterization of bacterioferritin from Pseudomonas aeruginosa and Azotobacter vinelandii.
    Cheesman MR; Kadir FH; al-Basseet J; al-Massad F; Farrar J; Greenwood C; Thomson AJ; Moore GR
    Biochem J; 1992 Sep; 286 ( Pt 2)(Pt 2):361-7. PubMed ID: 1326939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. H2-uptake activity, spectra, reduction potentials, and kinetics of iron release on the surface of iron core from Azotobacter vinelandii bacterial ferritin.
    Huang HQ; Xu LS; Zhang FZ; Qui XH; Lin QM; Huang JW; Zao H; Huang NC; Zeng RY; Zeng D
    J Protein Chem; 1998 Jan; 17(1):45-52. PubMed ID: 9491927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A capillary electrophoresis method for studying apo, holo, recombinant, and subunit dissociated ferritins.
    Zhao Z; Malik A; Lee ML; Watt GD
    Anal Biochem; 1994 Apr; 218(1):47-54. PubMed ID: 8053567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic studies of iron deposition catalyzed by recombinant human liver heavy and light ferritins and Azotobacter vinelandii bacterioferritin using O2 and H2O2 as oxidants.
    Bunker J; Lowry T; Davis G; Zhang B; Brosnahan D; Lindsay S; Costen R; Choi S; Arosio P; Watt GD
    Biophys Chem; 2005 Apr; 114(2-3):235-44. PubMed ID: 15829358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anaerobic iron deposition into horse spleen, recombinant human heavy and light and bacteria ferritins by large oxidants.
    Zhang B; Watt GD
    J Inorg Biochem; 2007 Nov; 101(11-12):1676-85. PubMed ID: 17804076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox-dependent structural changes in the Azotobacter vinelandii bacterioferritin: new insights into the ferroxidase and iron transport mechanism.
    Swartz L; Kuchinskas M; Li H; Poulos TL; Lanzilotta WN
    Biochemistry; 2006 Apr; 45(14):4421-8. PubMed ID: 16584178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of iron release from pig spleen ferritin with bare platinum electrode reduction.
    Huang HQ; Lin QM; Wang TL
    Biophys Chem; 2002 May; 97(1):17-27. PubMed ID: 12052492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox properties of the diheme cytochrome c4 from Azotobacter vinelandii and characterisation of the two hemes by NMR, MCD and EPR spectroscopy.
    Gadsby PM; Hartshorn RT; Moura JJ; Sinclair-Day JD; Sykes AG; Thomson AJ
    Biochim Biophys Acta; 1989 Jan; 994(1):37-46. PubMed ID: 2535788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bis-methionine ligation to heme iron in mutants of cytochrome b562. 1. Spectroscopic and electrochemical characterization of the electronic properties.
    Barker PD; Nerou EP; Cheesman MR; Thomson AJ; de Oliveira P; Hill HA
    Biochemistry; 1996 Oct; 35(42):13618-26. PubMed ID: 8885841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding of Pseudomonas aeruginosa apobacterioferritin-associated ferredoxin to bacterioferritin B promotes heme mediation of electron delivery and mobilization of core mineral iron.
    Weeratunga SK; Gee CE; Lovell S; Zeng Y; Woodin CL; Rivera M
    Biochemistry; 2009 Aug; 48(31):7420-31. PubMed ID: 19575528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox reactivity of bacterial and mammalian ferritin: is reductant entry into the ferritin interior a necessary step for iron release?
    Watt GD; Jacobs D; Frankel RB
    Proc Natl Acad Sci U S A; 1988 Oct; 85(20):7457-61. PubMed ID: 2845407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic and biophysical properties of a nitrogenase Apo-MoFe protein produced by a nifB-deletion mutant of Azotobacter vinelandii.
    Christiansen J; Goodwin PJ; Lanzilotta WN; Seefeldt LC; Dean DR
    Biochemistry; 1998 Sep; 37(36):12611-23. PubMed ID: 9730834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroscopic studies of the seven-iron-containing ferredoxins from Azotobacter vinelandii and Thermus thermophilus.
    Johnson MK; Bennett DE; Fee JA; Sweeney WV
    Biochim Biophys Acta; 1987 Jan; 911(1):81-94. PubMed ID: 3024733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 2.6 A resolution crystal structure of the bacterioferritin from Azotobacter vinelandii.
    Liu HL; Zhou HN; Xing WM; Zhao JF; Li SX; Huang JF; Bi RC
    FEBS Lett; 2004 Aug; 573(1-3):93-8. PubMed ID: 15327981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fe2+ binding to apo and holo mammalian ferritin.
    Jacobs D; Watt GD; Frankel RB; Papaefthymiou GC
    Biochemistry; 1989 Nov; 28(23):9216-21. PubMed ID: 2557919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.