These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 8246199)

  • 1. Feed artery role in blood flow control to rat hindlimb skeletal muscles.
    Williams DA; Segal SS
    J Physiol; 1993 Apr; 463():631-46. PubMed ID: 8246199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction between sympathetic nerve activation and muscle fibre contraction in resistance vessels of hamster retractor muscle.
    VanTeeffelen JW; Segal SS
    J Physiol; 2003 Jul; 550(Pt 2):563-74. PubMed ID: 12754308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical compression elicits vasodilatation in rat skeletal muscle feed arteries.
    Clifford PS; Kluess HA; Hamann JJ; Buckwalter JB; Jasperse JL
    J Physiol; 2006 Apr; 572(Pt 2):561-7. PubMed ID: 16497720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of arterial feed vessels to skeletal muscle functional hyperemia.
    Lash JM
    J Appl Physiol (1985); 1994 Apr; 76(4):1512-9. PubMed ID: 8045827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of long-term electrical stimulation of rabbit fast muscles on the reactivity of their supplying arteries.
    Hudlická O; Fronek K
    J Vasc Res; 1992; 29(1):13-9. PubMed ID: 1554862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vasomotor responses of soleus feed arteries from sedentary and exercise-trained rats.
    Jasperse JL; Laughlin MH
    J Appl Physiol (1985); 1999 Feb; 86(2):441-9. PubMed ID: 9931174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endothelium-dependent vasodilation in different rat hindlimb skeletal muscles.
    McAllister RM
    J Appl Physiol (1985); 2003 May; 94(5):1777-84. PubMed ID: 12533499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of ageing and physical activity on vascular morphology in rat skeletal muscle.
    Behnke BJ; Prisby RD; Lesniewski LA; Donato AJ; Olin HM; Delp MD
    J Physiol; 2006 Sep; 575(Pt 2):617-26. PubMed ID: 16644803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rat hindlimb muscle blood flow during level and downhill locomotion.
    Delp MD; Duan C; Ray CA; Armstrong RB
    J Appl Physiol (1985); 1999 Feb; 86(2):564-8. PubMed ID: 9931192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Communication between feed arteries and microvessels in hamster striated muscle: segmental vascular responses are functionally coordinated.
    Segal SS; Duling BR
    Circ Res; 1986 Sep; 59(3):283-90. PubMed ID: 3769148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mild aerobic training with blood flow restriction increases the hypertrophy index and MuSK in both slow and fast muscles of old rats: Role of PGC-1α.
    Bahreinipour MA; Joukar S; Hovanloo F; Najafipour H; Naderi V; Rajiamirhasani A; Esmaeili-Mahani S
    Life Sci; 2018 Jun; 202():103-109. PubMed ID: 29604268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of stimulation frequency on blood flow in rat fast skeletal muscles.
    Hawker MJ; Egginton S
    Exp Physiol; 1999 Sep; 84(5):941-6. PubMed ID: 10502661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic and static components in the myogenic control of vascular tone in cat skeletal muscle.
    Grände PO
    Acta Physiol Scand Suppl; 1979; 476():1-44. PubMed ID: 232614
    [No Abstract]   [Full Text] [Related]  

  • 14. Integration of blood flow control to skeletal muscle: key role of feed arteries.
    Segal SS
    Acta Physiol Scand; 2000 Apr; 168(4):511-8. PubMed ID: 10759588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of manual acupuncture with sparrow pecking on muscle blood flow of normal and denervated hindlimb in rats.
    Shinbara H; Okubo M; Sumiya E; Fukuda F; Yano T; Kitade T
    Acupunct Med; 2008 Sep; 26(3):149-59. PubMed ID: 18818561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aerobic muscle contraction impaired by serotonin-mediated vasoconstriction.
    Dora KA; Rattigan S; Colquhoun EQ; Clark MG
    J Appl Physiol (1985); 1994 Jul; 77(1):277-84. PubMed ID: 7961245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arterial and arteriolar contributions to skeletal muscle functional hyperemia in spontaneously hypertensive rats.
    Lash JM
    J Appl Physiol (1985); 1995 Jan; 78(1):93-100. PubMed ID: 7713849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural regulation on the active sodium-potassium transport in hypokalaemic rat skeletal muscles.
    Akaike N; Hirata A; Kiyohara T; Oyama Y
    J Physiol; 1983 Aug; 341():245-55. PubMed ID: 6137559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fatigability and blood flow in the rat gastrocnemius-plantaris-soleus after hindlimb suspension.
    McDonald KS; Delp MD; Fitts RH
    J Appl Physiol (1985); 1992 Sep; 73(3):1135-40. PubMed ID: 1400027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in the microcirculation in slow and fast skeletal muscles with long term limitations of blood supply.
    Dawson JM; Hudlicka O
    Cardiovasc Res; 1990 May; 24(5):390-5. PubMed ID: 2372794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.