These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 8246222)

  • 1. Aminoacyl analogs of chloramphenicol: examination of the kinetics of inhibition of peptide bond formation.
    Drainas D; Mamos P; Coutsogeorgopoulos C
    J Med Chem; 1993 Nov; 36(23):3542-5. PubMed ID: 8246222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aminoacyl and peptidyl analogs of chloramphenicol as slow-binding inhibitors of ribosomal peptidyltransferase: a new approach for evaluating their potency.
    Michelinaki M; Mamos P; Coutsogeorgopoulos C; Kalpaxis DL
    Mol Pharmacol; 1997 Jan; 51(1):139-46. PubMed ID: 9016356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of ribosomal peptidyltransferase by chloramphenicol. Kinetic studies.
    Drainas D; Kalpaxis DL; Coutsogeorgopoulos C
    Eur J Biochem; 1987 Apr; 164(1):53-8. PubMed ID: 3549307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Slow-onset inhibition of ribosomal peptidyltransferase by lincomycin.
    Kallia-Raftopoulos S; Kalpaxis DL; Coutsogeorgopoulos C
    Arch Biochem Biophys; 1992 Nov; 298(2):332-9. PubMed ID: 1416965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Partial release of AcPhe-Phe-tRNA from ribosomes during poly(U)-dependent poly(Phe) synthesis and the effects of chloramphenicol.
    Rheinberger HJ; Nierhaus KH
    Eur J Biochem; 1990 Nov; 193(3):643-50. PubMed ID: 2249685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of peptidyltransferase and possible mode of action of a dipeptidyl chloramphenicol analog.
    McFarlan SC; Vince R
    Biochem Biophys Res Commun; 1984 Jul; 122(2):748-54. PubMed ID: 6380501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Type of inhibition of peptide bond formation by chloramphenicol depends on the temperature and the concentration of ammonium ions.
    Kalpaxis DL; Coutsogeorgopoulos C
    Mol Pharmacol; 1989 Oct; 36(4):615-9. PubMed ID: 2682205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of polyamines on the inhibition of peptidyltransferase by antibiotics: revisiting the mechanism of chloramphenicol action.
    Xaplanteri MA; Andreou A; Dinos GP; Kalpaxis DL
    Nucleic Acids Res; 2003 Sep; 31(17):5074-83. PubMed ID: 12930958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of inhibition of peptide bond formation on bacterial ribosomes.
    Theocharis DA; Synetos D; Kalpaxis DL; Drainas D; Coutsogeorgopoulos C
    Arch Biochem Biophys; 1992 Jan; 292(1):266-72. PubMed ID: 1727642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New aspects of the kinetics of inhibition by lincomycin of peptide bond formation.
    Kallia-Raftopoulos S; Kalpaxis DL; Coutsogeorgopoulos C
    Mol Pharmacol; 1994 Nov; 46(5):1009-14. PubMed ID: 7969063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GTP consumption of elongation factor Tu during translation of heteropolymeric mRNAs.
    Rodnina MV; Wintermeyer W
    Proc Natl Acad Sci U S A; 1995 Mar; 92(6):1945-9. PubMed ID: 7892205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction between the antibiotic spiramycin and a ribosomal complex active in peptide bond formation.
    Dinos G; Synetos D; Coutsogeorgopoulos C
    Biochemistry; 1993 Oct; 32(40):10638-47. PubMed ID: 8399209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of chloramphenicol binding to Escherichia coli 70S ribosomes by 2'(3')-O-aminoacyl-dinucleoside phosphates derived from the aminoacyl-tRNA acceptor terminus.
    Goldberg R; Ringer D; Chládek S
    Eur J Biochem; 1977 Dec; 81(2):373-8. PubMed ID: 340224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibitory effect of spermine on ribosomal peptidyltransferase.
    Kalpaxis DL; Drainas D
    Arch Biochem Biophys; 1993 Feb; 300(2):629-34. PubMed ID: 8434942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding of chloramphenicol and a fragment of aminoacyl-transfer ribonucleic acid to ribosomes and a ribosome precursor from a mutant of Escherichia coli.
    Butler PD; Sims PF; Wild DG
    Biochem J; 1978 Jun; 172(3):503-8. PubMed ID: 356851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual effect of chloramphenicol peptides on ribosome inhibition.
    Bougas A; Vlachogiannis IA; Gatos D; Arenz S; Dinos GP
    Amino Acids; 2017 May; 49(5):995-1004. PubMed ID: 28283906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic studies on activation of peptide bond formation by hyaluronic acid.
    Theocharis DA; Drainas D
    Int J Biochem; 1992 Aug; 24(8):1341-5. PubMed ID: 1644215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The complex formation between Escherichia coli aminoacyl-tRNA, elongation factor Tu and GTP. The effect of the side-chain of the amino acid linked to tRNA.
    Wagner T; Sprinzl M
    Eur J Biochem; 1980; 108(1):213-21. PubMed ID: 6773761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The peptidyltransferase center of Escherichia coli ribosomes: binding sites for the cytidine 3'-phosphate residues of the aminoacyl-tRNA 3'-terminus and the interrelationships between the acceptor and donor sites.
    Bhuta P; Kumar G; Chládek S
    Biochim Biophys Acta; 1982 Feb; 696(2):208-11. PubMed ID: 7037055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ribosome protection by tRNA derivatives against inactivation by virginiamycin M: evidence for two types of interaction of tRNA with the donor site of peptidyl transferase.
    Chinali G; Di Giambattista M; Cocito C
    Biochemistry; 1987 Mar; 26(6):1592-7. PubMed ID: 3109469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.