These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 8246222)

  • 41. Cooperative and antagonistic interactions of peptidyl-tRNA and antibiotics with bacterial ribosomes.
    Contreras A; Vázquez D
    Eur J Biochem; 1977 Apr; 74(3):539-47. PubMed ID: 323015
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Interaction of N-acetyl-phenylalanyl-tRNAPhe with 70S ribosomes of Escherichia coli.
    Odinzov VB; Kirillov SV
    Nucleic Acids Res; 1978 Oct; 5(10):3871-9. PubMed ID: 364420
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Interchangeability of elongation factor-Tu and elongation factor-1 in aminoacyl-tRNA binding to 70 S and 80 S ribosomes.
    Grasmuk H; Nolan RD; Drews J
    FEBS Lett; 1977 Oct; 82(2):237-42. PubMed ID: 334567
    [No Abstract]   [Full Text] [Related]  

  • 44. Undecagold cluster modified tRNA(Phe) from Escherichia coli and its activity in the protein elongation cycle.
    Blechschmidt B; Shirokov V; Sprinzl M
    Eur J Biochem; 1994 Jan; 219(1-2):65-71. PubMed ID: 8307030
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The synthesis of polyphenylalanine on ribosomes to which erythromycin is bound.
    Odom OW; Picking WD; Tsalkova T; Hardesty B
    Eur J Biochem; 1991 Jun; 198(3):713-22. PubMed ID: 1904819
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mechanism of protein synthesis inhibition by didemnin B in vitro.
    SirDeshpande BV; Toogood PL
    Biochemistry; 1995 Jul; 34(28):9177-84. PubMed ID: 7619818
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The kinetics of ribosomal peptidyl transfer revisited.
    Johansson M; Bouakaz E; Lovmar M; Ehrenberg M
    Mol Cell; 2008 Jun; 30(5):589-98. PubMed ID: 18538657
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Complete kinetic mechanism of elongation factor Tu-dependent binding of aminoacyl-tRNA to the A site of the E. coli ribosome.
    Pape T; Wintermeyer W; Rodnina MV
    EMBO J; 1998 Dec; 17(24):7490-7. PubMed ID: 9857203
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Interaction of Chloramphenicol Tripeptide Analogs with Ribosomes.
    Tereshchenkov AG; Shishkina AV; Tashlitsky VN; Korshunova GA; Bogdanov AA; Sumbatyan NV
    Biochemistry (Mosc); 2016 Apr; 81(4):392-400. PubMed ID: 27293096
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structure-function relationship of the inhibition of the 3,5,3'-triiodothyronine binding to the alpha1- and beta1-thyroid hormone receptor by amiodarone analogs.
    van Beeren HC; Bakker O; Wiersinga WM
    Endocrinology; 1996 Jul; 137(7):2807-14. PubMed ID: 8770901
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pulvomycin, an inhibitor of protein biosynthesis preventing ternary complex formation between elongation factor Tu, GTP, and aminoacyl-tRNA.
    Wolf H; Assmann D; Fischer E
    Proc Natl Acad Sci U S A; 1978 Nov; 75(11):5324-8. PubMed ID: 364475
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The effect of aminoacyl- or peptidyl-tRNA at the A-site on the arrangement of deacylated tRNA at the ribosomal P-site.
    Babkina GT; Bausk EV; Graifer DM; Karpova GG; Matasova NB
    FEBS Lett; 1984 May; 170(2):290-4. PubMed ID: 6202554
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mechanism of codon-anticodon interaction in ribosomes. Direct functional evidence that isolated 30S subunits contain two codon-specific binding sites for transfer RNA.
    Kirillov SV; Makhno VI; Semenkov YP
    Nucleic Acids Res; 1980 Jan; 8(1):183-96. PubMed ID: 6986612
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hygromycin A, a novel inhibitor of ribosomal peptidyltransferase.
    Guerrero MD; Modolell J
    Eur J Biochem; 1980 Jun; 107(2):409-14. PubMed ID: 6156832
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enacyloxin IIa, an inhibitor of protein biosynthesis that acts on elongation factor Tu and the ribosome.
    Cetin R; Krab IM; Anborgh PH; Cool RH; Watanabe T; Sugiyama T; Izaki K; Parmeggiani A
    EMBO J; 1996 May; 15(10):2604-11. PubMed ID: 8665868
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The G222D mutation in elongation factor Tu inhibits the codon-induced conformational changes leading to GTPase activation on the ribosome.
    Vorstenbosch E; Pape T; Rodnina MV; Kraal B; Wintermeyer W
    EMBO J; 1996 Dec; 15(23):6766-74. PubMed ID: 8978702
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Codon-anticodon interaction at the ribosomal P (peptidyl-tRNA)site.
    Wurmbach P; Nierhaus KH
    Proc Natl Acad Sci U S A; 1979 May; 76(5):2143-7. PubMed ID: 221915
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Truncated elongation factor G lacking the G domain promotes translocation of the 3' end but not of the anticodon domain of peptidyl-tRNA.
    Borowski C; Rodnina MV; Wintermeyer W
    Proc Natl Acad Sci U S A; 1996 Apr; 93(9):4202-6. PubMed ID: 8633041
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Quantitative study of the interaction of formylmethionyl-tRNAfMet with ribosomes of Escherichia coli.
    Ivanov YV; Grajevskaja RA; Saminsky EM
    Eur J Biochem; 1980 May; 106(2):449-56. PubMed ID: 6995106
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Analysis of the puromycin reaction. The ribosomal exclusion principle for AcPhe-tRNA binding re-examined.
    Geigenmüller U; Hausner TP; Nierhaus KH
    Eur J Biochem; 1986 Dec; 161(3):715-21. PubMed ID: 3024981
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.