BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 8246489)

  • 1. Changes in hepatocyte NADH fluorescence during prolonged hypoxia.
    Obi-Tabot ET; Hanrahan LM; Cachecho R; Beer ER; Hopkins SR; Chan JC; Shapiro JM; LaMorte WW
    J Surg Res; 1993 Dec; 55(6):575-80. PubMed ID: 8246489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction between tissue oxygen tension and NADH imaging during synaptic stimulation and hypoxia in rat hippocampal slices.
    Foster KA; Beaver CJ; Turner DA
    Neuroscience; 2005; 132(3):645-57. PubMed ID: 15837126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early midzonal cell death during low-flow hypoxia in the isolated, perfused rat liver: protection by allopurinol.
    Marotto ME; Thurman RG; Lemasters JJ
    Hepatology; 1988; 8(3):585-90. PubMed ID: 3371875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NADH videofluorimetry to monitor the energy state of skeletal muscle in vivo.
    van der Laan L; Coremans A; Ince C; Bruining HA
    J Surg Res; 1998 Feb; 74(2):155-60. PubMed ID: 9587354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneous NADH fluorescence during post-anoxic reactive hyperemia in saline perfused rat heart.
    Ince C; Vink H; Wieringa PA; Giezeman M; Spaan JA
    Adv Exp Med Biol; 1990; 277():477-82. PubMed ID: 2096651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Columnar alterations of NADH fluorescence during hypoxia-ischemia in immature rat brain.
    Welsh FA; Vannucci RC; Brierley JB
    J Cereb Blood Flow Metab; 1982; 2(2):221-8. PubMed ID: 7076734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potentiation of adriamycin toxicity by ethanol in perfused rat liver.
    Liu Y; Thurman RG
    J Pharmacol Exp Ther; 1992 Nov; 263(2):651-6. PubMed ID: 1432695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo analysis of hepatic NADH fluorescence. Methodological approach to exclude Ito-cell vitamin A-derived autofluorescence.
    Burkhardt M; Vollmar B; Menger MD
    Adv Exp Med Biol; 1998; 454():83-9. PubMed ID: 9889879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-resolution microscopic determination of hepatic NADH fluorescence for in vivo monitoring of tissue oxygenation during hemorrhagic shock and resuscitation.
    Vollmar B; Burkhardt M; Minor T; Klauke H; Menger MD
    Microvasc Res; 1997 Sep; 54(2):164-73. PubMed ID: 9327387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic adaptation to hypoxia. Redox state of the cellular free NAD pools, phosphorylation state of the adenylate system and the (Na+-K+)-stimulated ATP-ase in rat liver.
    Kinnula VL; Hassinen I
    Acta Physiol Scand; 1978 Sep; 104(1):109-16. PubMed ID: 211796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucose transport and hypoxia-reoxygenation injury in the perfused rat liver.
    Le Couteur DG; Rivory LP; Pond SM
    J Gastroenterol Hepatol; 1994; 9(4):385-90. PubMed ID: 7948821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased work in cardiac trabeculae causes decreased mitochondrial NADH fluorescence followed by slow recovery.
    Brandes R; Bers DM
    Biophys J; 1996 Aug; 71(2):1024-35. PubMed ID: 8842239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactive oxygen species formation in the transition to hypoxia in skeletal muscle.
    Zuo L; Clanton TL
    Am J Physiol Cell Physiol; 2005 Jul; 289(1):C207-16. PubMed ID: 15788484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Downregulation of E. coli-induced TNF-alpha expression in perfused liver by hypoxia-reoxygenation.
    Wibbenmeyer LA; Lechner AJ; Munoz CF; Matuschak GM
    Am J Physiol; 1995 Feb; 268(2 Pt 1):G311-9. PubMed ID: 7864128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox state of free nicotinamide-adenine nucleotides in the cytoplasm and mitochondria of alveolar macrophages.
    Mintz S; Robin ED
    J Clin Invest; 1971 Jun; 50(6):1181-6. PubMed ID: 4325308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microscopic analysis of NADH fluorescence during aerobic and anaerobic liver preservation conditions: A noninvasive technique for assessment of hepatic metabolism.
    Klauke H; Minor T; Vollmar B; Isselhard W; Menger MD
    Cryobiology; 1998 Mar; 36(2):108-14. PubMed ID: 9527872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NADH fluorescence in vivo: changes in cerebral oxidative metabolism and perfusion induced by pentobarbital, indomethacin, and salicylate.
    Nowicki JP; Jourdain D; MacKenzie ET
    J Cereb Blood Flow Metab; 1987 Jun; 7(3):280-8. PubMed ID: 3584263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pretransplantation assessment of renal viability with NADH fluorimetry.
    Coremans JM; Van Aken M; Naus DC; Van Velthuysen ML; Bruining HA; Puppels GJ
    Kidney Int; 2000 Feb; 57(2):671-83. PubMed ID: 10652046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cardiorespiratory, tissue oxygen and hepatic NADH responses to graded hypoxia.
    Stidwill RP; Rosser DM; Singer M
    Intensive Care Med; 1998 Nov; 24(11):1209-16. PubMed ID: 9876985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cortical NADH during pharmacological manipulations of the respiratory chain and spreading depression in vivo.
    Rex A; Pfeifer L; Fink F; Fink H
    J Neurosci Res; 1999 Aug; 57(3):359-70. PubMed ID: 10412027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.