These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 8246506)

  • 21. Dynamic motion planning of 3D human locomotion using gradient-based optimization.
    Kim HJ; Wang Q; Rahmatalla S; Swan CC; Arora JS; Abdel-Malek K; Assouline JG
    J Biomech Eng; 2008 Jun; 130(3):031002. PubMed ID: 18532851
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinematics of level terrestrial and underwater walking in the California newt, Taricha torosa.
    Ashley-Ross MA; Lundin R; Johnson KL
    J Exp Zool A Ecol Genet Physiol; 2009 Apr; 311(4):240-57. PubMed ID: 19266497
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stability in legged locomotion.
    Karcnik T
    Biol Cybern; 2004 Jan; 90(1):51-8. PubMed ID: 14762724
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigation and characterization of rat bipedal walking models established by a training program.
    Wada N; Toba Y; Iwamoto W; Goto M; Miyata H; Mori F; Morita F
    Brain Res; 2008 Dec; 1243():70-7. PubMed ID: 18835381
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A collisional model of the energetic cost of support work qualitatively explains leg sequencing in walking and galloping, pseudo-elastic leg behavior in running and the walk-to-run transition.
    Ruina A; Bertram JE; Srinivasan M
    J Theor Biol; 2005 Nov; 237(2):170-92. PubMed ID: 15961114
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The six determinants of gait and the inverted pendulum analogy: A dynamic walking perspective.
    Kuo AD
    Hum Mov Sci; 2007 Aug; 26(4):617-56. PubMed ID: 17617481
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effects of sloped surfaces on locomotion: a kinematic and kinetic analysis.
    Lay AN; Hass CJ; Gregor RJ
    J Biomech; 2006; 39(9):1621-8. PubMed ID: 15990102
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Performance of an inverted pendulum model directly applied to normal human gait.
    Buczek FL; Cooney KM; Walker MR; Rainbow MJ; Concha MC; Sanders JO
    Clin Biomech (Bristol, Avon); 2006 Mar; 21(3):288-96. PubMed ID: 16325971
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Emergence of adaptability to time delay in bipedal locomotion.
    Ohgane K; Ei S; Kazutoshi K; Ohtsuki T
    Biol Cybern; 2004 Feb; 90(2):125-32. PubMed ID: 14999479
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Patterns of mechanical energy change in tetrapod gait: pendula, springs and work.
    Biewener AA
    J Exp Zool A Comp Exp Biol; 2006 Nov; 305(11):899-911. PubMed ID: 17029267
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of model complexity and gait criteria on the synthesis of bipedal locomotion.
    Townsend MA; Seireg AA
    IEEE Trans Biomed Eng; 1973 Nov; 20(6):433-44. PubMed ID: 4754317
    [No Abstract]   [Full Text] [Related]  

  • 32. Kinematic control of walking.
    Lacquaniti F; Ivanenko YP; Zago M
    Arch Ital Biol; 2002 Oct; 140(4):263-72. PubMed ID: 12228979
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinematics and ontogeny of locomotion in monkeys and human babies.
    Niemitz C
    Z Morphol Anthropol; 2002 Mar; 83(2-3):383-400. PubMed ID: 12050907
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Using computed muscle control to generate forward dynamic simulations of human walking from experimental data.
    Thelen DG; Anderson FC
    J Biomech; 2006; 39(6):1107-15. PubMed ID: 16023125
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Towards a general neural controller for quadrupedal locomotion.
    Maufroy C; Kimura H; Takase K
    Neural Netw; 2008 May; 21(4):667-81. PubMed ID: 18490136
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An artificial neural network that utilizes hip joint actuations to control bifurcations and chaos in a passive dynamic bipedal walking model.
    Kurz MJ; Stergiou N
    Biol Cybern; 2005 Sep; 93(3):213-21. PubMed ID: 16059784
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Towards applicable ballistic walking.
    van der Linde RQ
    Technol Health Care; 1999; 7(6):449-53. PubMed ID: 10665680
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biomechanics of locomotion in subgravity.
    Margaria R
    Life Sci Space Res; 1973; 11():177-85. PubMed ID: 12523382
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of pendulum mechanism and kinematic coordination from the first unsupported steps in toddlers.
    Ivanenko YP; Dominici N; Cappellini G; Dan B; Cheron G; Lacquaniti F
    J Exp Biol; 2004 Oct; 207(Pt 21):3797-810. PubMed ID: 15371487
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the origin of planar covariation of elevation angles during human locomotion.
    Ivanenko YP; d'Avella A; Poppele RE; Lacquaniti F
    J Neurophysiol; 2008 Apr; 99(4):1890-8. PubMed ID: 18272871
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.