These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 8246506)

  • 41. Mechanical models for insect locomotion: active muscles and energy losses.
    Schmitt J; Holmes P
    Biol Cybern; 2003 Jul; 89(1):43-55. PubMed ID: 12836032
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Locomotion by Abdopus aculeatus (Cephalopoda: Octopodidae): walking the line between primary and secondary defenses.
    Huffard CL
    J Exp Biol; 2006 Oct; 209(Pt 19):3697-707. PubMed ID: 16985187
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bipedal walking and running with spring-like biarticular muscles.
    Iida F; Rummel J; Seyfarth A
    J Biomech; 2008; 41(3):656-67. PubMed ID: 17996242
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Kinematic and EMG determinants in quadrupedal locomotion of a non-human primate (Rhesus).
    Courtine G; Roy RR; Hodgson J; McKay H; Raven J; Zhong H; Yang H; Tuszynski MH; Edgerton VR
    J Neurophysiol; 2005 Jun; 93(6):3127-45. PubMed ID: 15647397
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biological inspiration used for robots motion synthesis.
    Zielińska T
    J Physiol Paris; 2009; 103(3-5):133-40. PubMed ID: 19665556
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A comparison analysis of hindlimb kinematics during overground and treadmill locomotion in rats.
    Pereira JE; Cabrita AM; Filipe VM; Bulas-Cruz J; Couto PA; Melo-Pinto P; Costa LM; Geuna S; Maurício AC; Varejão AS
    Behav Brain Res; 2006 Sep; 172(2):212-8. PubMed ID: 16777243
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Segment and joint angles of hind limb during bipedal and quadrupedal walking of the bonobo (Pan paniscus).
    D'Août K; Aerts P; De Clercq D; De Meester K; Van Elsacker L
    Am J Phys Anthropol; 2002 Sep; 119(1):37-51. PubMed ID: 12209572
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Posture, gait and the ecological relevance of locomotor costs and energy-saving mechanisms in tetrapods.
    Reilly SM; McElroy EJ; Biknevicius AR
    Zoology (Jena); 2007; 110(4):271-89. PubMed ID: 17482802
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Interlimb coordination during locomotion: what can be adapted and stored?
    Reisman DS; Block HJ; Bastian AJ
    J Neurophysiol; 2005 Oct; 94(4):2403-15. PubMed ID: 15958603
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Speed modulation in hylobatid bipedalism: a kinematic analysis.
    Vereecke EE; D'Août K; Aerts P
    J Hum Evol; 2006 Nov; 51(5):513-26. PubMed ID: 16959298
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Predictive modelling of human walking over a complete gait cycle.
    Ren L; Jones RK; Howard D
    J Biomech; 2007; 40(7):1567-74. PubMed ID: 17070531
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Underwater bipedal locomotion by octopuses in disguise.
    Huffard CL; Boneka F; Full RJ
    Science; 2005 Mar; 307(5717):1927. PubMed ID: 15790846
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A simple model of step control in bipedal locomotion.
    Morawski JM
    IEEE Trans Biomed Eng; 1978 Nov; 25(6):544-9. PubMed ID: 744601
    [No Abstract]   [Full Text] [Related]  

  • 54. From neuron to behavior: dynamic equation-based prediction of biological processes in motor control.
    Daun-Gruhn S; Büschges A
    Biol Cybern; 2011 Jul; 105(1):71-88. PubMed ID: 21769740
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modeling individual human motor behavior through model reference iterative learning control.
    Zhou SH; Oetomo D; Tan Y; Burdet E; Mareels I
    IEEE Trans Biomed Eng; 2012 Jul; 59(7):1892-901. PubMed ID: 22481807
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment.
    Taga G; Yamaguchi Y; Shimizu H
    Biol Cybern; 1991; 65(3):147-59. PubMed ID: 1912008
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Energy management that generates terrain following versus apex-preserving hopping in man and machine.
    Kalveram KT; Haeufle DF; Seyfarth A; Grimmer S
    Biol Cybern; 2012 Jan; 106(1):1-13. PubMed ID: 22350535
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Soft tissue vibration: a biologically-inspired mechanism for stabilizing bipedal locomotion.
    Masters SE; Challis JH
    Bioinspir Biomim; 2021 Jan; 16(2):. PubMed ID: 33352541
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Finite state control of planar bipeds with application to walking and sitting.
    Hemami H; Tomovic R; Ceranowicz AZ
    J Bioeng; 1978; 2(6):477-94. PubMed ID: 753838
    [No Abstract]   [Full Text] [Related]  

  • 60. Efficient bipedal locomotion on rough terrain via compliant ankle actuation with energy regulation.
    Kerimoglu D; Karkoub M; Ismail U; Morgul O; Saranli U
    Bioinspir Biomim; 2021 Aug; 16(5):. PubMed ID: 34256362
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.