BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 8246682)

  • 1. The indirect pathway of hepatic glycogen synthesis and reduction of food intake by metabolic inhibitors.
    Hellerstein MK; Xie Y
    Life Sci; 1993; 53(24):1833-45. PubMed ID: 8246682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient hepatic glycogen synthesis in refeeding rats requires continued carbon flow through the gluconeogenic pathway.
    Newgard CB; Moore SV; Foster DW; McGarry JD
    J Biol Chem; 1984 Jun; 259(11):6958-63. PubMed ID: 6725277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathway of gluconeogenesis from D- and L-glycerate in rat hepatocytes.
    Chen KS; Lardy HA
    Arch Biochem Biophys; 1988 Sep; 265(2):433-40. PubMed ID: 3421717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence that the stimulation of lipogenesis in the mammary glands of starved lactating rats re-fed with a chow diet is dependent on continued hepatic gluconeogenesis during the absorptive period. Effects of a gluconeogenic inhibitory, mercaptopicolinic acid, in vivo.
    Williamson DH; Ilic V; Jones RG
    Biochem J; 1985 Jun; 228(3):727-33. PubMed ID: 4026806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glyconeogenesis from L-proline involves metabolite inhibition of the glucose-6-phosphatase system.
    Bode AM; Foster JD; Nordlie RC
    J Biol Chem; 1992 Feb; 267(5):2860-3. PubMed ID: 1310675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of a meal feeding schedule on hepatic glycogen synthesis and gluconeogenesis in rats.
    Batista MR; Curi R; Lima FB; Lopes G; Bazotte RB
    J Biomed Sci; 2001; 8(3):256-61. PubMed ID: 11385297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The contribution of pyruvate cycling to loss of [6-3H]glucose during conversion of glucose to glycogen in hepatocytes: effects of insulin, glucose and acinar origin of hepatocytes.
    Agius L; Tosh D; Peak M
    Biochem J; 1993 Jan; 289 ( Pt 1)(Pt 1):255-62. PubMed ID: 8380985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycogen synthesis from glucose by direct and indirect pathways in hepatocyte cultures from different nutritional states.
    Tosh D; Beresford G; Agius L
    Biochim Biophys Acta; 1994 Nov; 1224(2):205-12. PubMed ID: 7981234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direction of carbon flux in starvation and after refeeding: in vitro and in vivo effects of 3-mercaptopicolinate.
    Sugden MC; Watts DI; Palmer TN; Myles DD
    Biochem Int; 1983 Sep; 7(3):329-37. PubMed ID: 6679346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of 3-mercaptopicolinic acid inhibition of hepatic phosphoenolpyruvate carboxykinase (GTP).
    Jomain-Baum M; Schramm VL; Hanson RW
    J Biol Chem; 1976 Jan; 251(1):37-44. PubMed ID: 1244353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycogen synthesis in amphibian oocytes: evidence for an indirect pathway.
    Kessi E; Guixé V; Preller A; Ureta T
    Biochem J; 1996 Apr; 315 ( Pt 2)(Pt 2):455-60. PubMed ID: 8615814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the direct and indirect pathways for glycogen synthesis in rat liver in the postprandial state.
    Huang MT; Veech RL
    J Clin Invest; 1988 Mar; 81(3):872-8. PubMed ID: 3343346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic effects of a fat- and carbohydrate-rich meal in rats.
    Surina-Baumgartner DM; Arnold M; Moses A; Langhans W
    Physiol Behav; 1996; 59(4-5):973-81. PubMed ID: 8778895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Postprandial glycogen and lipid synthesis in prednisolone-treated rats maintained on high-protein diets with varied carbohydrate levels.
    Obeid OA; Boukarim LK; Al Awar RM; Hwalla N
    Nutrition; 2006 Mar; 22(3):288-94. PubMed ID: 16412611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of phosphoenolpyruvate carboxykinase, glyceroneogenesis and fatty acid synthesis in rat adipose tissue by quinolinate and 3-mercaptopicolinate.
    MacDonald MJ; Grewe BK
    Biochim Biophys Acta; 1981 Jan; 663(1):302-13. PubMed ID: 7213768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of diet supplementation with glutamine, dihydroxyacetone, and leucine on food intake, weight gain, and postprandial glycogen metabolism of rats.
    Obeid OA; Bittar ST; Hwalla N; Emery PW
    Nutrition; 2005 Feb; 21(2):224-9. PubMed ID: 15723752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hepatic gluconeogenesis in rats trained to eat a single meal daily. Role of eating periodicity and the amount of food ingested in the last meal.
    Batista MR; Vasconcelos MS; Rebola VD; Galletto R; Curi R; Bazotte RB
    Res Commun Mol Pathol Pharmacol; 2001; 109(5-6):345-56. PubMed ID: 12889517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Are physiological changes in meal-fed rats determined by the amount of food ingested in the last meal or due to feeding schedule?
    Batista MR; Ferraz M; Bazotte RB
    Physiol Behav; 1997 Aug; 62(2):249-53. PubMed ID: 9251965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of phosphoenolpyruvate carboxykinase from Trypanosoma (Schizotrypanum) cruzi epimastigotes by 3-mercaptopicolinic acid: in vitro and in vivo studies.
    Urbina JA; Osorno CE; Rojas A
    Arch Biochem Biophys; 1990 Oct; 282(1):91-9. PubMed ID: 2221921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hepatic metabolism of meal-fed rats: studies in vivo and in the isolated perfused liver.
    Bazotte RB; Constantin J; Hell NS; Bracht A
    Physiol Behav; 1990 Aug; 48(2):247-53. PubMed ID: 2255727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.