These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 8247154)

  • 1. Modulation of the cell cycle contributes to the parcellation of the primate visual cortex.
    Dehay C; Giroud P; Berland M; Smart I; Kennedy H
    Nature; 1993 Dec; 366(6454):464-6. PubMed ID: 8247154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clonal heterogeneity in the early embryonic rodent cortical germinal zone and the separation of subventricular from ventricular zone lineages.
    Reznikov K; Acklin SE; van der Kooy D
    Dev Dyn; 1997 Nov; 210(3):328-43. PubMed ID: 9389457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The timetable of laminar neurogenesis contributes to the specification of cortical areas in mouse isocortex.
    Polleux F; Dehay C; Kennedy H
    J Comp Neurol; 1997 Aug; 385(1):95-116. PubMed ID: 9268119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for a postnatal doubling of neuron number in the developing human cerebral cortex between 15 months and 6 years.
    Shankle WR; Landing BH; Rafii MS; Schiano A; Chen JM; Hara J
    J Theor Biol; 1998 Mar; 191(2):115-40. PubMed ID: 9631564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variability and partial synchrony of the cell cycle in the germinal zone of the early embryonic cerebral cortex.
    Reznikov K; van der Kooy D
    J Comp Neurol; 1995 Sep; 360(3):536-54. PubMed ID: 8543657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuronal production of fibronectin in the cerebral cortex during migration and layer formation is unique to specific cortical domains.
    Sheppard AM; Brunstrom JE; Thornton TN; Gerfen RW; Broekelmann TJ; McDonald JA; Pearlman AL
    Dev Biol; 1995 Dec; 172(2):504-18. PubMed ID: 8612967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The importance of developmental timing in cortical specification.
    Kennedy H; Dehay C
    Perspect Dev Neurobiol; 1993; 1(2):93-9. PubMed ID: 8087537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 'Top-down' influences of ipsilateral or contralateral postero-temporal visual cortices on the extra-classical receptive fields of neurons in cat's striate cortex.
    Bardy C; Huang JY; Wang C; Fitzgibbon T; Dreher B
    Neuroscience; 2009 Jan; 158(2):951-68. PubMed ID: 18976693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pattern formation in the developing mammalian forebrain: selective adhesion of early but not late postmitotic cortical and striatal neurons within forebrain reaggregate cultures.
    Krushel LA; van der Kooy D
    Dev Biol; 1993 Jul; 158(1):145-62. PubMed ID: 8330669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histogenesis of ferret somatosensory cortex.
    Noctor SC; Scholnicoff NJ; Juliano SL
    J Comp Neurol; 1997 Oct; 387(2):179-93. PubMed ID: 9336222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases.
    Noctor SC; Martínez-Cerdeño V; Ivic L; Kriegstein AR
    Nat Neurosci; 2004 Feb; 7(2):136-44. PubMed ID: 14703572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of bilateral enucleation in the primate fetus on the parcellation of visual cortex.
    Dehay C; Horsburgh G; Berland M; Killackey H; Kennedy H
    Brain Res Dev Brain Res; 1991 Sep; 62(1):137-41. PubMed ID: 1760867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feedback connections to ferret striate cortex: direct evidence for visuotopic convergence of feedback inputs.
    Cantone G; Xiao J; McFarlane N; Levitt JB
    J Comp Neurol; 2005 Jul; 487(3):312-31. PubMed ID: 15892103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uniformity, specificity and variability of corticocortical connectivity.
    Hilgetag CC; Grant S
    Philos Trans R Soc Lond B Biol Sci; 2000 Jan; 355(1393):7-20. PubMed ID: 10703041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium-binding proteins in the human developing brain.
    Ulfig N
    Adv Anat Embryol Cell Biol; 2002; 165():III-IX, 1-92. PubMed ID: 12236093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental changes in calretinin expression in GABAergic and nonGABAergic neurons in monkey striate cortex.
    Yan YH; van Brederode JF; Hendrickson AE
    J Comp Neurol; 1995 Dec; 363(1):78-92. PubMed ID: 8682939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early development of visual cortex in human fetuses.
    Masood F; Wadhwa S; Bijlani V
    Arch Ital Anat Embriol; 1990; 95(1):1-10. PubMed ID: 2275596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation of signal timing in cortical areas V1 and V2 of senescent monkeys.
    Wang Y; Zhou Y; Ma Y; Leventhal AG
    Cereb Cortex; 2005 Apr; 15(4):403-8. PubMed ID: 15749984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of thalamic input to the specification of cytoarchitectonic cortical fields in the primate: effects of bilateral enucleation in the fetal monkey on the boundaries, dimensions, and gyrification of striate and extrastriate cortex.
    Dehay C; Giroud P; Berland M; Killackey H; Kennedy H
    J Comp Neurol; 1996 Mar; 367(1):70-89. PubMed ID: 8867284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of neuroblast cell-cycle kinetics plays a crucial role in the generation of unique features of neocortical areas.
    Polleux F; Dehay C; Moraillon B; Kennedy H
    J Neurosci; 1997 Oct; 17(20):7763-83. PubMed ID: 9315898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.