These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

44 related articles for article (PubMed ID: 8247226)

  • 1. Special Issue: Circadian Rhythms and Age Related Disorder: How Does Aging Impact Mammalian Circadian Organization?
    Xu W; Li X
    Adv Biol (Weinh); 2023 Nov; 7(11):e2200219. PubMed ID: 36449746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Individual differences and diversity in human physiological responses to light.
    Spitschan M; Santhi N
    EBioMedicine; 2022 Jan; 75():103640. PubMed ID: 35027334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multi-level assessment of the bidirectional relationship between aging and the circadian clock.
    Buijink MR; Michel S
    J Neurochem; 2021 Apr; 157(1):73-94. PubMed ID: 33370457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estradiol treatment improves biological rhythms in a preclinical rat model of menopause.
    Yin W; Borniger JC; Wang X; Maguire SM; Munselle ML; Bezner KS; Tesfamariam HM; Garcia AN; Hofmann HA; Nelson RJ; Gore AC
    Neurobiol Aging; 2019 Nov; 83():1-10. PubMed ID: 31585360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Biological Clock in Gray Mouse Lemur: Adaptive, Evolutionary and Aging Considerations in an Emerging Non-human Primate Model.
    Hozer C; Pifferi F; Aujard F; Perret M
    Front Physiol; 2019; 10():1033. PubMed ID: 31447706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age-related changes in neurochemical components and retinal projections of rat intergeniculate leaflet.
    Fiuza FP; Silva KD; Pessoa RA; Pontes AL; Cavalcanti RL; Pires RS; Soares JG; Nascimento Júnior ES; Costa MS; Engelberth RC; Cavalcante JS
    Age (Dordr); 2016 Feb; 38(1):4. PubMed ID: 26718202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proximate mechanisms driving circadian control of neuroendocrine function: Lessons from the young and old.
    Williams WP; Gibson EM; Wang C; Tjho S; Khattar N; Bentley GE; Tsutsui K; Kriegsfeld LJ
    Integr Comp Biol; 2009 Nov; 49(5):519-37. PubMed ID: 21665838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circadian clock-coordinated hepatic lipid metabolism: only transcriptional regulation?
    Gachon F; Bonnefont X
    Aging (Albany NY); 2010 Mar; 2(2):101-6. PubMed ID: 20354271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resetting of central and peripheral circadian oscillators in aged rats.
    Davidson AJ; Yamazaki S; Arble DM; Menaker M; Block GD
    Neurobiol Aging; 2008 Mar; 29(3):471-7. PubMed ID: 17129640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decreased sensitivity to phase-delaying effects of moderate intensity light in older subjects.
    Duffy JF; Zeitzer JM; Czeisler CA
    Neurobiol Aging; 2007 May; 28(5):799-807. PubMed ID: 16621166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Responsiveness of the aging circadian clock to light.
    Benloucif S; Green K; L'Hermite-Balériaux M; Weintraub S; Wolfe LF; Zee PC
    Neurobiol Aging; 2006 Dec; 27(12):1870-9. PubMed ID: 16309797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aging alters the rhythmic expression of vasoactive intestinal polypeptide mRNA but not arginine vasopressin mRNA in the suprachiasmatic nuclei of female rats.
    Krajnak K; Kashon ML; Rosewell KL; Wise PM
    J Neurosci; 1998 Jun; 18(12):4767-74. PubMed ID: 9614250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective alteration of long-term potentiation-induced transcriptional response in hippocampus of aged, memory-impaired rats.
    Lanahan A; Lyford G; Stevenson GS; Worley PF; Barnes CA
    J Neurosci; 1997 Apr; 17(8):2876-85. PubMed ID: 9092609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-induced gene expression in the suprachiasmatic nucleus of young and aging rats.
    Sutin EL; Dement WC; Heller HC; Kilduff TS
    Neurobiol Aging; 1993; 14(5):441-6. PubMed ID: 8247226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual sensitivities of nur77 (NGFI-B) and zif268 (NGFI-A) induction in the suprachiasmatic nucleus are dissociated from c-fos induction and behavioral phase-shifting responses.
    Lin JT; Kornhauser JM; Singh NP; Mayo KE; Takahashi JS
    Brain Res Mol Brain Res; 1997 Jun; 46(1-2):303-10. PubMed ID: 9191106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-induced phase shifts of circadian activity rhythms and immediate early gene expression in the suprachiasmatic nucleus are attenuated in old C3H/HeN mice.
    Benloucif S; Masana MI; Dubocovich ML
    Brain Res; 1997 Jan; 747(1):34-42. PubMed ID: 9042525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photic entrainment and induction of immediate-early genes within the rat circadian system.
    Beaulé C; Amir S
    Brain Res; 1999 Mar; 821(1):95-100. PubMed ID: 10064792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circadian regulation of c-fos expression in the suprachiasmatic pacemaker by light.
    Earnest DJ; Olschowka JA
    J Biol Rhythms; 1993; 8 Suppl():S65-71. PubMed ID: 8274764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immediate-early genes and the neural bases of photic and non-photic entrainment.
    Hastings MH; Ebling FJ; Grosse J; Herbert J; Maywood ES; Mikkelsen JD; Sumova A
    Ciba Found Symp; 1995; 183():175-89; discussion 190-7. PubMed ID: 7656685
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.