These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 824728)

  • 1. The kinetics of the combination reaction between enzyme and substrate.
    Kuo-Chen C
    Sci Sin; 1976; 19(4):505-28. PubMed ID: 824728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The quantitative relations between diffusion-controlled reaction rate and characteristic parameters in enzyme-substrate reaction systems. I. Neutral substrates.
    Li TT; Chou KC
    Sci Sin; 1976; 19(1):117-36. PubMed ID: 1273571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo simulations of single- and multistep enzyme-catalyzed reaction sequences: effects of diffusion, cell size, enzyme fluctuations, colocalization, and segregation.
    Anderson JB; Anderson LE; Kussmann J
    J Chem Phys; 2010 Jul; 133(3):034104. PubMed ID: 20649305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The quantitative relations between diffusion-controlled reaction rate and characteristic parameters in enzyme-substrate reactions systems. II. Charged substrates.
    Kuo-chen C; Chih-kun K
    Sci Sin; 1975; 18(3):367-80. PubMed ID: 1198092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel method for determining kinetic parameters of dissociating enzyme systems.
    Wang ZX
    Anal Biochem; 1998 Nov; 264(1):8-21. PubMed ID: 9784182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate channeling.
    Spivey HO; Ovádi J
    Methods; 1999 Oct; 19(2):306-21. PubMed ID: 10527733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrostatic channeling of substrates between enzyme active sites: comparison of simulation and experiment.
    Elcock AH; Huber GA; McCammon JA
    Biochemistry; 1997 Dec; 36(51):16049-58. PubMed ID: 9405038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of the putative catalytic base in the phosphoryl transfer reaction in a protein kinase: first-principles calculations.
    Valiev M; Kawai R; Adams JA; Weare JH
    J Am Chem Soc; 2003 Aug; 125(33):9926-7. PubMed ID: 12914447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational active site analysis of molecular pathways to improve functional classification of enzymes.
    Ozyurt AS; Selby TL
    Proteins; 2008 Jul; 72(1):184-96. PubMed ID: 18214971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional reaction free energy surfaces of catalytic reaction: effects of protein conformational dynamics on enzyme catalysis.
    Min W; Xie XS; Bagchi B
    J Phys Chem B; 2008 Jan; 112(2):454-66. PubMed ID: 18085768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The prothrombinase reaction: "mechanism switching" between Michaelis-Menten and non-Michaelis-Menten behaviors.
    Lu Y; Nelsestuen GL
    Biochemistry; 1996 Jun; 35(25):8201-9. PubMed ID: 8679574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of protein dynamics in reaction rate enhancement by enzymes.
    Agarwal PK
    J Am Chem Soc; 2005 Nov; 127(43):15248-56. PubMed ID: 16248667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Relationship between the apparent order of substrate binding to an enzyme and the nature of the reaction between their active centers].
    Iashina LN; Malygin EG; Zinov'ev VV
    Mol Biol (Mosk); 1980; 14(6):1396-405. PubMed ID: 7442676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel electrostatic approach to enzyme mechanisms: carbonic anhydrase as an example.
    Ressler N
    Physiol Chem Phys Med NMR; 1993; 25(1):27-40. PubMed ID: 8316583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The kinetic basis of a general method for the investigation of active site content of enzymes and catalytic antibodies: first-order behaviour under single-turnover and cycling conditions.
    Topham CM; Gul S; Resmini M; Sonkaria S; Gallacher G; Brocklehurst K
    J Theor Biol; 2000 May; 204(2):239-56. PubMed ID: 10887904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on the rate of diffusion-controlled reactions of enzymes. Spatial factor and force field factor.
    Kuo-chen C; Shou-ping J
    Sci Sin; 1974 Oct; 27(5):664-80. PubMed ID: 4219062
    [No Abstract]   [Full Text] [Related]  

  • 17. Recent developments in the kinetic theory of nucleation.
    Ruckenstein E; Djikaev YS
    Adv Colloid Interface Sci; 2005 Dec; 118(1-3):51-72. PubMed ID: 16137628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite concentration effects on diffusion-controlled reactions.
    Senapati S; Wong CF; McCammon JA
    J Chem Phys; 2004 Oct; 121(16):7896-900. PubMed ID: 15485251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ribonucleotide activation by enzyme ribonucleotide reductase: understanding the role of the enzyme.
    Cerqueira NM; Fernandes PA; Eriksson LA; Ramos MJ
    J Comput Chem; 2004 Dec; 25(16):2031-7. PubMed ID: 15481089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active site loop motion in triosephosphate isomerase: T-jump relaxation spectroscopy of thermal activation.
    Desamero R; Rozovsky S; Zhadin N; McDermott A; Callender R
    Biochemistry; 2003 Mar; 42(10):2941-51. PubMed ID: 12627960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.